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SUMMARY 

This report summarizes research done in the last two and one-half years as an employee of 

the Operational Technologies Corporation. The original assignment was with the Radiation 

Analysis Branch of the Directed Energy Division (AL/OEDA) but, due to a number of 

reorganizations, was finished with the Biomathematics Branch of the Mathematical Products 

Division (AL/OESB). 

This effort addressed the direct problem in electromagnetic wave propagation and scat- 

tering in dispersive dielecfrics objects. Particularly, the research concentrated on the devel- 

opment of numerical approaches that can solve the problem in a timely fashion as accurately 

as possible given a reasonable amount of computational resources. In addition, analytical 

methods were developed for the purpose of extracting features of the problem which are 

special to dispersive objects. 

First, four existing Finite Difference Time Domain extensions for the modeling of pulse 

propagation in Debye or Lorentz dispersive media were analyzed through studying the stabil- 

ity and phase error properties of the coupled difference equations corresponding to Maxwell's 

equations and to the equations for the dispersion. For good overall accuracy we showed that 

all schemes should be run at their Courant stability limit, and that the timestep should 

finely resolve the medium timescales. Particularly, for Debye schemes it should be at least 

At = 10_3r, while for Lorentz schemes it should be At = 10~2r, where r is a typical 

medium relaxation time. A numerical experiment with a Debye medium confirmed this. We 

also determined that two of the discretizations for Debye media are totally equivalent. In the 

Lorentz medium case we established that the method that uses the polarization differential 

equation to model dispersion is stable for all wavenumbers, and that the method using the 

local-in-time constitutive relation is weakly unstable for modes with wavenumber k such that 

kAx > TT/2. 

In order to understand more fully the discretization requirements and the general behavior 

of existing numerical methods for dispersive media we considered the'propagation of arbitrary 

electromagnetic pulses in anomalously dispersive dielectrics characterized by M relaxation 

processes. A partial differential equation for the electric field in the dielectric was derived 

and analyzed. This single equation describes a hierarchy of M + 1 wave types, each type 

characterized by an attenuation coefficient and a wave speed. Our analysis identified a "skin- 

depth" where the pulse response is described by a telegrapher's equation with smoothing 



terms, travels with the wavefront speed, and decays exponentially. Past this shallow depth 

we showed that the pulse response is described by a weakly dispersive advection-diffusion 

equation, travels with the sub-characteristic advection speed equal to the zero-frequency 

phase velocity in the dielectric, and decays algebraically. The analysis was verified with a 

numerical simulation. The relevance of our results to the development of numerical methods 

for such problems was discussed. 

Armed with the knowledge that finite difference schemes, which are more accurate in 

space than in time, are better suited for modeling pulse propagation in dispersive dielectrics 

we next determined some important properties of such high-order schemes in comparison to 

standard schemes. For Finite Difference Time Domain methods we determined the spatial 

resolution of the discretized domain in terms of the total computation time and the desired 

phase error. It was shown that the spatial step should vary as Ax ~ g [^]
1/J

 in order to 

maintain a prescribed phase error level e^ throughout the computation time tc, where s (=2 

or 4) is the spatial order of accuracy of the scheme and g is a geometric factor. Significantly, 

we showed that the thumb rule of using 10-20 points per wavelength to determine the spatial 

cell size for the standard scheme is not optimal. Our results were verified by numerical 

simulations in two dimensions with the Yee scheme and the new 4th-order accurate scheme. 

Finally, we examined further aspects of electromagnetic pulse propagation in anomalously 

dispersive media, using the Debye model as an example. Short-pulse, long-pulse, short- 

time, and long-time approximations and amplitude rate of decay estimates were derived 

with asymptotic methods. We also studied the following problem: Knowing only the peak 

amplitude and power density of an incident pulse, what can be said about the peak amplitude 

of the propagated pulse? We provided sharp upper and lower bounds for the propagated 

amplitude which may be useful in controlling the electromagnetic interference or the damage 

produced in dispersive media. We explained a factor-of-nine effect in the speed of waves 

in a Debye model for water, which seems to have been previously unnoticed, and some 

observations from experimental studies of pulse propagation in biological materials. Finally, 

we proposed some guidelines for sample size in Transmission Time Domain Spectroscopy 

studies of dielectrics. 



Stability and Phase Error Analysis of 
FD-TD in Dispersive Dielectrics 

Abttract—Four FD-TD extension» for the modeling of pulse 
propagation in Debye or Lorents dispersive media are ana- 
lysed through studying the stability and phase error prop- 
erties of the coupled difference equations corresponding to 
Maxwell's equations and to the equations for the dispersion. 
For good overall accuracy we show thai all schemes should 
be run at their Courant stability limit, and that the timestep 
should finely resolve the medium timescales. Particularly, 
for Debye schemes it should be at least At = IO 3T, while 
for Lorents schemes it should be At = IO~'T, where r is a 
typical medium relaxation time. A numerical experiment 
with a Debye medium confirms this. We have determined 
that two of the discretisations for Debye media are totally 
equivalent. In the Lorents medium case we establish that 
the method that uses the polarisation differential equation 
to model dispersion is stable for all wavenumbers, and that 
the method using the local-in-time constitutive relation is 
weakly unstable for modes with wavenumber It such that 
kAx > -KJ-2. 

Keyword'— Dispersive media, finite-difference time-domain 
method, algorithm stability and phase error, RF dosimetry, 
bioelectromagnetics. 

I. INTRODUCTION 

THE Computational Electromagnetics community has de- 
veloped a variety of extensions of the popular FD-TD nu- 
merical method [l]-[2] for the modeling of pulse propaga- 
tion in dispersive media with complex geometry. A repre- 
sentative list of these extensions is [3]-[7].  Some of these 
extensions append to the Partial Differential Equations 
(PDEs), that express Maxwell's equations, a set of Ordi- 
nary Differential Equations (ODEs) that either describe 
the local-in-time constitutive relation [3] involving the dis- 

placement D and the electric field E, or the dynamic evolu- 
tion of the polarization P excited by the propagating elec- 
tric field [4]-[5]. Other popular extensions [6]-[7] use a con- 
volution representation of the constitutive relation which 
is updated in sync with the time update of the FD-TD dis- 
cretized PDEs.   In the near future we hope to report an 
analysis of the important convolution integral approach. 
All the new schemes are useful in studies concerning pos- 
sible medical effects of human exposure to pulsed electro- 
magnetic fields. This type of application requires the accu- 
rate representation of amplitude and phase information for 
each frequency component in the problem, and commonly 
involves the execution of thousands of timesteps. Thus, the 
numerical method of choice should correctly model any en- 
ergy loss due to physical mechanisms, and it should intro- 
duce as little phase error as possible, in addition to being 

stable for all possible waves that can be supported on the 
computational grid. 

The stability and phase error properties of the standard 
FD-TD approach are well known [2]. In sharp contrast, 
little is known of the numerical error properties of the dis- 
cretizations of the extensions of FD-TD to dispersive media 
modeled with ODEs [3]-[5]. Questions that should be an- 
swered before such extensions are used in production codes 

include the following: 

1) Is the stability restriction of the FD-TD that is used to 
model the PDE part of the problem altered by appending the 
discretized (to second order of accuracy) ODEs that model 

the material dispersion ? 

2) What are the artificial dissipative properties of the com- 

posite scheme ? 

3) How does the phase error now depend on the discretiza- 

tion parameters ? 

4) Are the medium constants (relaxation time, resonance 
frequency, etc.) altered by the discretization ? If so, how ? 

We answer these questions by performing a stability and 
phase error analysis [8] of the coupled PDE-ODE difference 
system that models one-dimensional pulse propagation in 
linear dispersive media of Debye [9] and Lorentz [10] type. 
The analysis is novel, and its purpose is to provide insight 
to the spurious numerical attributes of FD-TD extensions 
for dispersive dielectrics. We give many details for the one- 
dimensional case to bring forward the salient features. In 
Section IV we show, without detailed derivations and Fig- 
ures, the stability polynomial and the dispersion relation 
of the extensions studied herein for two/three-dimensional 
propagation in Debye and Lorentz dielectrics.  In the Dis- 
cussion section some guidelines will be provided for us- 
ing the schemes given the medium parameters. The main 
analysis shows that for accuracy the discretization has to 
adequately sample the shortest timescale in the problem 
regardless of whether it is the incident pulse timescale, 
the medium relaxation timescale, or the medium resonance 
timescale. The implication of this is that one usually will 
have to resolve a scale that may be a tenth (usually a hun- 
dredth or a thousandth) of that of the incident pulse. Such 
disparity of scales occurs often in practice where experi- 
mental data indicates that typical medium timescales are 
of O(10-8 - 10"12) seconds while the duration of pulses 
of large amplitude (of interest to health and safety ana- 
lysts) is of the order of hundreds of nanoseconds.   Also, 
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the Courant number should be chosen close to its max- 
imum value for stability so that the phase error is min- 
imum for a given timestep. Another important finding 
is that the discretization in [3] for a Lorentz medium is 
weakly unstable for wavenumbers k such that kAx > TT/2. 

These wavenumbers correspond to unresolved waves (less 
than 4 cells per wavelength) and numerical noise (grid-scale 
oscillations). Due to the instability such low-amplitude 
waves may contaminate well-resolved events in computa- 
tions encompassing thousands of timesteps, a case typical 
of computations in dispersive media which usually involve 
O(104-10s) timesteps. The discovered instability will tend 
to slowly amplify noise instead of producing detectable nu- 
merical overflow. The Lorentz scheme in [5] is found to be 
stable for 0 < JfeAx < ir, and to slightly damp the range 
kAx > 7r/2 so that the timestepping itself will remove the 
numerical noise instead of amplifying it. 

II. STABILITY ANALYSIS 

A. Debye Medium 

For brevity we will not include details of derivations since 
they are quite lengthy. Rather, we will describe any miss- 
ing steps so the reader can replicate them. Throughout, we 
assume the reader will refer to the appropriate reference for 
the relevant physical equations. For the sake of complete- 
ness we include the difference schemes for the approaches 
treated herein. 

We begin by considering the scheme presented in [3] for 
Debye dispersive media. The difference equations for the 
update of the magnetic, displacement, and electric fields 
read: 

,n+1    =    At + 2rDn+l     A*-2r 

€,At 

(1) 

E. 
n 

2re00 
■Ef, 

is determined by |£|. Substituting (2) in (1) we collect the 
coefficients of the vector x in the form of a homogeneous 
linear system Ax = 0 where the matrix A involves £, the 
discretization, and the medium parameters. Then we seek 
non-zero solutions for x by setting tfet(A) = 0. Extensive 
manipulations of the entries in A result in an algebraic 
polynomial equation for (. The polynomial, whose solu- 
tions give ( as a function of the medium parameters, the 
timestep, and the quantity k A (= 2n/Npjn,, Nppv =points 
per wavelength), is 

where n is the discrete time index, j is the discrete spatial 
index, JJ = 2TCOO + e. At, r is the medium relaxation time, 
Coo is the infinite frequency permittivity, e, is the static 
permittivity, and \ia is the permeability of the vacuum. 
Neglecting the effects of boundary conditions and initial 
conditions a solution of (1) is defined as follows 

ikjA (2) 

In (2) the complex valued vector x = {h,d,e}T is the 
eigenvector of the difference system, £ is the complex time- 
eigenvalue we wish to find and whose magnitude will deter- 
mine the stability and dissipation properties of the differ- 
ence equations, and k is the real wavenumber of the arbi- 
trary harmonic wave component whose stability and decay 

'■? 
3     p*(h + 2)-6e00-he.f2 

C 2e00+he, 

p2(/i - 2) -f 66oo - he, 

2ec 

2e«> + he, 

~ he> = 0, 

i 

2eOQ + he, 
(3) 

where p = 2i/sin *£, h = At/r, v = **£*, and all per- 
mittivities are now relative to e0. The speed c«, is the 
maximum wavespeed in the problem and is given by c,» = 
c/i/e~Z. The speed of light in free-space is c. 

Next we considered the scheme presented in [4]. The 
analysis determines that the two schemes are identical in 
terms of their stability polynomial and phase error (see 
Section III.A), provided we make the following identifica- 
tions and definitions for the medium parameters used in (3) 
above, i.e., set e«, = l and e, - l+x where x i3 the suscep- 
tibility used in [4]. Taking r = 8.1 x l0-l3sec, e, = 78.2, 
and fa, = l, we calculate numerically with IMSL routines 
the 3 roots of (3) for a variety of h and Courant numbers 
v as functions of JkA. These medium parameters describe 
the main relaxation of water in the microwave range of 

frequencies. 
By examining the root of largest magnitude, max|£|, as 

a function of JfcA in the range 0 < AA < 7r we determined 
that the difference equations are stable since it was always 
that max|£| < l for any kA in the range considered as long 
as v < l and h arbitrary. In such a graph the amount of 
artificial dissipation introduced by the differenced ODEs 
is evident since it is known that the FD-TD differenced 
PDEs should always have |£| = l for all kA when v < l. 
This is also obtained from (3) by solving for ( with h = 0. 
The result is shown in Fig. I for v = l. In the Figure 
we consider the values h = O.l, h = 0.01, and h - 0.001 
corresponding respectively to a resolution of 10, 100, and 
1000 timesteps per relaxation time, T. It turned out that 
max|£| > l (instability) whenever v > l (or v > V/^T 
if Co, < c) regardless of the medium parameters. Thus, 
the one-dimensional stability restriction of the standard 
FD-TD scheme is preserved by both extensions for Debye 
media. Further, since at a given space-time point the dis- 
persion is the material's memory of past Electric field val- 
ues, found along the axis of the light-cone extending into 
the past with vertex at the given spatial point, the sta- 
bility restriction of the standard FD-TD in two and three 
dimensions will also be preserved by these schemes. This 
is because the discrete dispersion variables are appropri- 
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ately centered with respect to the discrete Electric field 
so for 0 <v < l/vÄ, where dim{= 1, 2, 3) is the spa- 
tial dimension, the characteristics of the overall scheme are 
the same as those of the standard FD-TD and include the 
physical characteristics whose slope is ±c„. 

B. Lorentz Medium 
For the Lorentz medium case, the schemes of [3] (here 

called the JHT scheme), and [5] (here called the KF scheme), 
differ, both in the structure of their difference equations, 
and in their stability and phase error properties. 

We begin with the scheme given in [3] for Lorentz media. 

The difference equations now are as in (1), above, for H.+£ 

and D"+1. but the electric field update is performed with 
°^ 3       ' « 

i 77   J      »7 V 1 ^ 

where now r, = u>7
0At7e. + 25AteO0 + 2eo0, the other coeffi- 

cients being 

a = 4eoo 

ß = -[w7
0At7et - 2SAteco + 2«oo) 

7 = u7
0At7 + 25 At + 2 (5) 

C = -4. 

6 = uil At7 - 25At + 2. 

In (5) u0 is the medium resonance frequency, 5 = l/2r with 
T being the relaxation time, and the rest of the parameters 
are as above for the Debye medium. Substituting (2) into 
the difference equations we obtain the associated stability 
polynomial, now of fourth order in ( because (4) involves 
an extra level of storage, 

t+£±±£?+£Lt£e+£L^t+± = Q (6) 

with 

to the medium resonant frequency so h3 is a measure of how 
well the resonant period of the medium is resolved by the 
time discretization. 

Next, we analyze the scheme of [5]. The difference equa- 
tions given there are 

At 

(8) 

At.     n + i       H
n+U 

where x = ^, l" = l/T> €° is the f™e-space permittivity, 
and up is the plasma frequency. In terms of the parame- 
ter definitions used for the Lorentz scheme of [3] it is that 
u7 = ü>l(e. - 1). This scheme is nice for the following rea- 
son- The second, third, and fourth difference equations in 
(8) are implicit in the variables EJ+1, J;+1, J*+l, while 

the first and second are explicit in H*+£, Ej+l. As a re- 
sult, the stability properties are independent of the medium 
time constants, and the Courant restriction for stability of 
the standard scheme will be retained even in two and three 
dimensions.   The partial implicitness in (8) is not trou- 

in+i jn+l IS blesome since the matrix relating Ej 
inverted just once, except when At.x, "l, and r are func- 
tions of time. A solution of (8) is of the form 

= < . {ne,'*jA. (9) 

(7) 

7' = 2 + hi + 4TT2A2 

fl'=-4 

(' = 2 - hi + 4TT2/I5 

a  = -8eoo - 2/iifoo - iir^hle, 

ß = 12«oo + Z*7h\e, 

5' = -St«, + 2/nCoo - i^hle, 

T)' = 2f00 - hiCoo + 4e,7r2/i3, 

where now /u = At/r, h7 = At/T0 (T0 = 2TT/UJ0), and r, = 
2£oo + /ii«oo+4€17r3A2. The period T0 is that corresponding 

Substituting (9) in (8) and carrying out the steps indicated 
above we arrive at the stability polynomial for this scheme 

«+€l^?+ €£+£?+rt+±-i+± = * (io) 

for which now 

7' =4 + 2/»i +4TT2^ 

9  = -8 + 87ra/i?, 

C' = 4 - 2/ii + Air7h\ 

a' = -16-4A1 (11) 

.2 1.2 ß' = 24 - &e,ir7h 

<$' = -16 + 4/ii 

n' = A-2hl + Ae,rr7hl, 
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and 7j = 4 + 2/n + 4e,7T2/i3. Equation (10) is of 4th order in 
£ not because an additional time level was introduced but 
because the second order in time ODE for the polarization 
was transformed to a first order system in accordance with 

Maxwell equations. 
The parameters used in the two approaches considered 

will address the same physical problem if we set x = {o^, 
and u7 = wl(e, - 1) for the parameters used in [5] using 
values for w0, r, €«,, and e, from the numerical example of 
[31. With these values we study the 4 roots of the stability 
polynomials (6) and (10) using the parameter definitions 
(8) and (11) for each respectively. The values used here 
are r = 1.786 x 10_16sec, e«, = 1, c, = 2.25, and w0 = 
4x 1018rad/sec. The results are shown in Fig. 3a) for v — 1 
and Ai = 0.1, and in Fig. 3b) for v = 1 and /ii = 0.01. 
For the scheme of [5] it is determined that maa:|£| > 1, 
which corresponds to instability, occurs only when v > 1 
regardless of the medium parameters. However, for the 
scheme of [3] we observe instability for the range A: A > 7r/2 
and some ratios h\ — At/r. 

III. PHASE ERROR ANALYSIS 

Now we will determine the phase error of each approach 

considered in the previous section. After proper parameter 
identifications the modeling approaches of [3] and [4] for 
Debye media have identical phase error properties. We 
will consider the following definition of phase error 

in the difference equations (1), with (h,d,e)T being an ar- 
bitrary complex vector, and manipulate the result so that 
again we obtain a homogeneous linear system whose de- 
terminant of the coefficient matrix we demand to vanish. 
The dependence of k„um on the frequency CJ and on the 
various medium and discretization parameters is thus ob- 
tained. The result is 

$D>L(u>At) 1        *£LH 
(12) 

for real u, where Jfe«,x,(w) is the dispersion relation of the 
continuous models of Debye (D) and Lorentz (L) media 
given by 

*?» = 
U) — VJ 

C U   - — VJJ 

(13) 

L w     w2 - wie, + 2i5u) 

and Jfe^j^(wAf) will be determined in the subsections be- 
low. Note that for both types of media we have set £„, = e0 

so the expressions simplify (also this value is U3ed in the 
numerical experiments presented in the references). We 

have used u* = w^Xi X = «» ~ *. and 2(* = V7"to relate the 
Lorentz mediums of [3] and [5]'. The w range considered is 
such that 0 < wAt < ir given At. The spatial step A is 
determined from At and v. 

A. Debye Medium 

Only the scheme of [3] will be considered since it is iden- 
tical to that of [4] for e«, = e0. To determine the numerical 
dispersion relation we now substitute 

„•'(*°u„.iA-w"A|) (14) 

*nu,>At) = -sin- 
rw A -*• COS —= IW3U 

- COS S^ — 1U3U 
1. (15) 

where su = "° ^f//2 • By inspecting (15), and comparing 

it to k?x given above, two features emerge that are solely 
due to the discretization of the ODE involved. The re- 
laxation time r of the medium is now rnum = co,(J^,y2) > 
i.e., the medium actually modeled by the numerics is one 
with higher relaxation time constant. This is the source of 
the artificial dissipation exhibited by the maximum root, 
max|{|, of (3). Further, since cos(wAt/2) -+ 0 for u -» 
7r/Ai, we infer that the corresponding frequency compo- 
nent will be adversely affected by the scheme since it will 
experience a medium of unphysically high constant conduc- 
tivity equal to e0(e, - l)/rnum. Such artificial dissipation 
can be controlled by choosing At so that coswAf/2 ~ 1 
across the range of frequencies present in the short-pulse 
that propagates in the medium. For v = 1, Fig. 2 shows 
the dependence of the phase error (12) on the number of 
timesteps per relaxation time, h = At/r, as a function of 

wAt. 

B. Lorentz Medium 

For the scheme in [3] pertaining to Lorentz media, we 
follow the same procedure as with the Debye medium but 
now the third difference equation in (1) is replaced with (4). 
Using (14) we obtain for the numerical dispersion relation 

""numi 

r       , s        2    .       ,.uA 

(16) 

Equation (16) shows how this extension of FD-TD misrep- 

resents the relaxation time by enforcing rnum = T'.'£(" A/) ' 
and the resonance frequency of the medium by enforcing 

wnum _ WoV/Cos(wAt). 

Next, we determine the phase error of the scheme in [5]. 

Substituting 

, e«(*'u™JA-u,T,At) (17) 
f H? ] [     h    ] 

E? 

i 
>   =   i 

e 

P 

V        J         ' [   3   J 
in the difference equations (10) we obtain the dispersion 

relation 

r       , x 2    .      ,,«A 
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V »7*i 
e,ul cos2^-+ 2i8coa^u3u 

■]. (18) 
w233  _ w3 COS2 *f* + 2tf COS äfi W5U 

now for 7 of [5] equal to 25 (5 is used in [3]). From (18) 
we see that this approach also misrepresents the relax- 

ation time by enforcing rnum = co.(JAt/2) which 1S the 

same as the misrepresentation in the Debye medium case. 
The numerical resonance frequency of the medium is now 

w»»m _ aI(>cos(a;At/2). 
"phase error comparisons between the two approaches us- 

ing (12) are shown in Figs. 4a) and 4b) for v = 1, and ratios 

h-L = Ai/r = 0.1 and 0.01 respectively. 

IV. 2/3 DIMENSIONAL EXTENSIONS 

Herein we assume the reader is familiar with the two dimen- 

sional Transverse Magnetic polarization formulation of the 
standard FD-TD [1]. The unknown two-dimensional fields 
are Hx, H,, Dx, Ex. The discretized dispersion ODE of 
all schemes is unchanged in higher dimensions. We set 

As = Ay = A. 
To determine the stability for the Debye extension of the 

scheme of [3] we proceed as in Section H.A. The difference 
equations now reflect the existence of the extra fields and 
the two spatial variables. Accordingly, (2) is extended as 

follows 

in the difference equations and proceeding as in one di- 
mension. After performing the calculations we find that 
the dispersion relation for real frequency w is 

> = < 
en ei{jk cot e+mktin fl)A       Mg\ 

where (j, m) are the discrete spatial indices, k — ^jk\ + ky 

is the wavenumber magnitude, and 9 is the angle of prop- 
agation with respect to the grid x-axis. Equation (3) be- 

comes 

p2(2 + h)- 8foo - 2he,   3     12e00-4p2  a 

i   + 26oo + he, * 2eM + he. 

p*(2-h)-&e00 + 2he, 
+ 2eoa + he, 

2ceo -he, _0 

2foo+/l€. 

■t 

(20) 

sin2p(w,0,A)-rsin2C(",0,A) = 

A2^ 

4   c2 

,UJL Vco3^-iec 

i cos ^ - iw5u r 2 

(22) 

where p = k^um{wAt) cos 9(A/2), C = k^m(uAt) sin 9(A/2). 
Again, for £,» = 1 the two-dimensional extension of the De- 
bye scheme of [4] is again identical to that of [3]. 

The stability of the Lorentz scheme of [5] can be ad- 
dressed with the discussions in the end of Section II.A 
and below equation (8). The relevant polynomial for the 

Lorentz scheme of [3] is 

where now p2 = 4i/2(sin2 p + sin2 C). P = kcos9(A/2), 
and C = k sin ö(A/2). The numerical dispersion relation is 

obtained by using 

+ 

p2
7-3-a 4     P

2(C-7) + 3 + 3Q-/^3 

5  + V *> 
P

2(g-Q-l-3a + 3/3fi 

v 
»h> ,1 

q-3/3-flp2        ß=Q. (23) 

and the various symbol definitions can all be found in equa- 
tions (4) and (5). In (23) p2 is the same as for equation 
(20). The numerical dispersion relations for all the Lorentz 
medium schemes are easily obtained from equations (16) 
and (18) by inspection considering that dispersion is a tem- 
poral phenomenon and does not enter in geometrical con- 
siderations. As a result, the two-dimensional dispersion 

relations are 

sin2 p(w, 9, A) + sin2 C(w, 9, A) = A2, (24) 

where A is the argument of the sin-1 function in (16) and 
(18), and p and < are defined as for (22) but with k^um 

replacing k°um. Notice that (22) can also be derived m 
the same way with A now being the argument of the sin 

function in (15). 
In three dimensions the dispersion relation for all schemes 

(Debye and Lorentz) considered herein will be 

sin2 />(w, 9, V>, A) + sin2 <(w, 9, tf, A) 

+    sin27r(w,0,V',A) = yi2. (25) 

cote+mk°^mtine)&-un&t]     ^jX 

In (25), A is as above, p = *£&(«At) cos 9 sin tf (A/2), C = 
Jfc££(a,At)sin0simKA/2), » = k°ii(u,At)cos^{A/2), 
with V> being the angle of propagation of the harmonic wave 
with respect to the z-axis and now 9 being the angle be- 
tween the grid x-axis and the projection of the wavevector, 
^m(wAt) = xfcf -L + yk»<L + ~zk?>L, on the x - y plane. 

V. DISCUSSION 

The finite difference approaches of [3] and [4] for Debye me- 

dia have been determined to be equivalent in any number 
of dimensions. Therefore, we studied the stability polyno- 
mial (3) and the phase error (15), obtained for the scheme 
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of [3] in one dimension. Fig. 1 shows the magnitude of 
the largest of the 3 roots of the stability polynomial as a 
function of the product JfeA, which may be thought of as 
wavenumber if A is fixed, or as inverse of points per wave- 
length (equivalently, as A) if k is viewed as fixed. While 
the Figure shows all roots to be inside the unit circle (hence 
the scheme to be stable), it also indicates that the differ- 
ence equations are now spuriously dissipative. This is in 
contrast to the case where FD-TD solves Maxwell's equa- 
tions in free-space (the solid line in these Figures), or when 
the dispersion ODEs are solved separately from Maxwell's 
equations, i.e., set h = 0 in (3) and solve for the roots. It 
turned out that for v < 1 it was max|£| < 1 always, and 
that nws|£| > 1 only for u > 1. Therefore these exten- 
sions of FD-TD for Debye media preserve the stability re- 
striction of the standard FD-TD scheme in non-dispersive 
dielectrics. The graph also shows that the artificial dissi- 

pation is strongly dependent on the quantity h. We see 
that h has to be sufficiently small so that not much en- 
ergy is lost after the large amount of timesteps usually 
needed to propagate short pulses any appreciable distance 

into a medium. One guideline for a user would be that the 
timestep chosen must be at least of O(10~3r), where r is 
the relaxation time in the Debye medium, or the smallest 
relaxation time in a medium modeled with multiple Debye 
relaxation mechanisms. In Fig. 2 the phase error (12) is 
graphed as a function of wAt for the same three values of 
h. The horizontal axis again has a triple interpretation, 
i.e, frequency, timestep, or points per period. Again, we 
see that At ~ O(10_3r) is optimal. In both Figures u = 1, 
i.e., the maximum Courant number for stability. It turned 
out that if v < 1 then, for a fixed accuracy, the timestep re- 
striction with regard to the relaxation time is more severe, 
thus another guideline is that these schemes should be run 
close to their Courant stability limit, and this will result in 
minimal run time since the timestep will then be optimally 
maximum. One must point out that these results do not 
depend on the points per wavelength used to sample the 
incident/propagating pulse. If the pulse duration is longer 

than the relaxation time, one must still maintain a sam- 
pling rate that resolves the shortest timescale, which is the 
relaxation time in this case. If the incident pulse duration 
is shorter than r one decides on the sampling in the usual 
way as long as h = 10-3. 

Figs. 3a) and 3b) are concerned with stability compar- 
isons of the JHT scheme and the KF scheme, for Lorentz 
media. We see that the JHT scheme "13 unstable (max|£| > 
1) for kA > 7r/2 at v — 1 if h\ is not chosen correctly, 
whereas the standard FD-TD and the KF scheme are sta- 
ble for all wavenumbers. It turns out that the JHT ex- 
tension has a stability limit that is more restrictive than 
that of FD-TD in non-dispersive dielectrics. Reducing h\ 
to at least 10-2 stabilizes the scheme. We attribute this 
instability to incorrect time centering of the local-in-time 
constitutive relation with respect to the time centering of 
the discretized PDEs. From the difference equation (4) for 
the constitutive relation it is seen that dD/dt, d2D/dt2 are 
centered at the n-th timestep while in the Maxwell's equa- 

tions discretization dD/dt is centered at the n+i timestep. 
This is also indicated by the presence of sinusoidal factors 
with argument uiAt and wAt/2 in the dispersion relation 
for the scheme (16). On the other hand, the KF scheme 
centers the ODE part correctly and does not exhibit this 
instability. The phase error of the two Lorentz schemes are 
shown in Figs. 4a) and 4b) for v — 1 and two values of 
h\. Running the schemes with v < 1 is again discouraged. 
For these schemes we notice that it is enough to choose 
At ~ O(10_2r), where r = 1/(2J). Note that the KF 
scheme exhibits consistently less phase error than the JHT 
scheme. We have not investigated the effect of varying hj 
since for the numerical values of the medium parameters 
used here, r ~ T0. 

In Section IV we presented the stability polynomials of 
the Debye medium schemes and of the weakly unstable 
Lorentz scheme of [3] for two-dimensional TM propagation. 
All schemes that correctly center the dispersion variables 
preserve the known stability restriction of the standard FD- 
TD in higher dimensions. Numerically solving for the roots 
of these polynomials and determining the largest root, as 

a function of the discretization parameters for each angle 
of propagation of the harmonic wave given the medium 
parameters, one can easily ascertain the degree of decay 
each mode will sustain and thus will be guided towards the 
selection of optimum parameters. The Debye schemes and 
the Lorentz scheme of [5] are stable for v < \jyfi. regardless 
of the value of h, or hi. The Lorentz scheme of [3] is again 
weakly unstable. The dispersion relations of all schemes 
are easy to deduce in higher dimensions, once their one- 
dimensional form is known. We give all dispersion relations 
in two and three dimensions. Now the wavenumber cannot 
be explicitly determined as a function of the real frequency 
u). An iterative scheme must be used to calculate k°£i 
for each w, 8, ip, given the medium parameters, using the 
non-dispersive value u^/c as a starting value. 

Finally, we simulated the propagation of a 1 nanosec- 
ond duration square-modulated sine wave with carrier fre- 
quency at 10 GHz normally incident on a Debye medium 
(<r, = 80.35, ff« = 1.0, T = 8.13 picoseconds) half-space 
from the air side. Six runs were made with a code written 
from reference [3]. The timestep was successively halved 
(starting with h ~ 0.05) by halving h for fixed r and 
v = 1. A time trace of the electric field at a depth of 10 mm 
was recorded with a window of 2 nanoseconds. The num- 
ber of timesteps executed in each run was 2 x 10-9/At ~ 
O(103 - 105). Fig. 5 shows the time traces from the first 
three runs and how they converge with the reduction of 
the timestep. Further reduction shows that the timestep 
for which h — 0.00615 is adequate for a converged re- 
sult. In Fig. 6, the h = 0.00615 result is indistinguishable 
from the h — 0.003075 result. Graphs of the dissipation 
and phase errors (not shown here) reflect the fact that, 
in terms of numerical errors, the computed results should 
not change much with further timestep reduction past the 
value for which h = 0.00615. With only this information we 
could have avoided the six convergence runs. The guideline 
At ~ O(10-3r) is confirmed. 
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VI. SUMMARY 

In this paper wc have analyzed four FD-TD based schemes 

for modeling pulse propagation in dispersive media of De- 
bye and Lorentz type. The medium dispersion is described 
by ODEs representing the local-in-time constitutive rela- 
tion [3] or the dynamic equation for the polarization evo- 
lution driven by the electric field [4]-[5]. We found that 
the extensions considered here do not preserve the non- 
dissipative character of the standard FD-TD which is good 
for tracking individual frequency components for a large 
amount of timesteps, and that the ease of limiting artifi- 
cial dispersion is lost since now there are more parameters, 
in addition to v, that control it. The overall difference sys- 
tems are more dispersive than the standard FD-TD, and 
their accuracy depends strongly on hpw well the chosen 
timestep resolves the shortest timescales. All parameters 
which play a major role in the elimination of artificial dis- 
sipation and phase error for these schemes have been iden- 
tified. The higher dimensional form of our results has also 

been given. 
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The Wave Hierarchy for Propagation in Relaxing Dielectrics 

Abstract 

We consider the propagation of arbitrary electromagnetic pulses in anomalously 
dispersive dielectrics characterized by M relaxation processes. A partial differential 
equation for the electric field in the dielectric is derived and analyzed. This single 
equation describes a hierarchy of M + 1 wave types, each type characterized by an at- 
tenuation coefficient and a wave speed. Our analysis identifies a "skin-depth" where the 
pulse response is described by a telegrapher's equation with smoothing terms, travels 
with the wavefront speed, and decays exponentially. Past this shallow depth we show 
that the pulse response is described by a weakly dispersive advection-diffusion equa- 
tion, travels with the sub-characteristic advection speed equal to the zero-frequency 
phase velocity in the dielectric, and decays algebraically. The analysis is verified with 
a numerical simulation. The relevance of our results to the development of numerical 

methods for such problems is discussed. 
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1. Introduction 

The application of ultra-short pulsed fields in the areas of radar, hyperthermia, and bio- 

logical/environmental imaging is imminent. For that reason there is a need for a thorough 

understanding of the short-pulse response of media, such as biological tissues, soils, humid 

atmospheres, and radar absorbing materials, whose dielectric properties are described by 

frequency-dependent permittivity models fitted to experimental data. In addition, a future 

extension of the IEEE C95.1-1991 RF exposure standard to regulate pulsed fields will also 

require qualitative and quantitative understanding of this sort to be developed. Since the 

alternative to actual measurement of the response is numerical simulation we are also inter- 

ested in obtaining analytical results to guide the development of robust numerical techniques 

for such applications (see Section 6). 

In this paper we consider time-domain electromagnetic pulse propagation in general relax- 

ing dielectrics, a problem relevant to studies of electromagnetic interactions in homogeneous 

anomalously dispersive media. We will be concerned primarily with biological media but our 

results can be used directly to understand pulse propagation in other dielectrics provided 

their permittivity is represented by relaxation models. The Debye model [1] (orientational 

relaxation mechanism) has been found to accurately represent the experimentally obtained 

frequency-dependent permittivity of biological media [2]-[3], of homogeneous dispersive rock 

[4]-[5], and of homogeneous sea ice [6]. All these media generally exhibit several relaxation 

mechanisms. Accordingly, experimentally obtained dielectric data is fitted to the complex 

relative permittivity function 

£H = eco + f:f^, (1) 
x    ' ~  1- VjJTn 

n=l 

for the relevant range of frequencies u> in order to study wave propagation in a given mate- 

rial. In (1) too is the infinite-frequency relative permittivity, e? the zero-frequency relative 

permittivity of the n-th relaxation mechanism, and rn the n-th relaxation time constant. 

The phase velocity of harmonic waves in the dielectric is vpha"(w) = c/ReyJe(uj), with c 

being the speed of light in vacuum. Typical parameters for which (1) fits water data in 

the microwave frequency range are M = 1, e, = 80.35, e«, = 1.0, r = 8.13 picoseconds 

[2]. Water is considered here since it is a major constituent of human tissue. We will use 

the inverse Fourier transform with (1) in the electromagnetic frequency-domain constitutive 

relation, D - e0e(u)E = e^e^E + J2„=i Pn), to close tne system of Maxwell's equations in 
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the time-domain with M ordinary differential equations, one for each relaxation Pn forced 

by the electric field. The reformulation in Section 3 of the resulting problem (Equation (3), 

Section 2) as a signaling problem involving a single partial differential equation (p.d.e.) for 

the electric field E, 
M 

£/UAf-n(^-4d»)£ = o, (2) 
n=0 

facilitates further analysis. The coefficients ßn characterize dissipative effects associated with 

the n-th wave type, and c„ is the corresponding wave speed. Both constants are related 

to the parameters selected, so that (1) fits the experimental data for a given medium. All 

the sub-characteristics of (2) with speeds c» {n = 1,...,M) lie between the characteristic 

with speed Co, and the zero speed characteristic of multiplicity M. Therefore, the relative 

permittivity (1) is causal and its real and imaginary parts are related through the Kramers- 

Kronig relations [7]. 

Equation (2) belongs to a class of p.d.e.   which describe coexisting waves of different 

types [8], e.g., non-dispersive, dispersive, diffusive.   In Section 4 we show that the high- 

order term, n = 0, mainly describes the propagation of the penetrating pulse in a thin layer 

near the air/dielectric interface. In this layer the lower order terms contribute exponential 

decay and smoothing of the pulse envelope. We name this short depth the "skin-depth" for 

pulses.  The pulse propagates there with speed Co = v^'e{u = co).  The layer's width is 

determined by the time constant of the fastest relaxation since it will be the first one to 

equilibrate, i.e., z,k{n ~ 0[coTm{n) meters. Each lower order term, 1< n < M - 1, becomes 

sequentially important as the pulse propagates deeper in the medium while the remaining 

orders introduce smoothing, dispersion, and diffusion. Since the available experimental data 

shows that ßu » 1 typically , the low-order term, n = M, will describe the main response 

which will travel with speed cM = «^"(w = 0) in the bulk of the medium while the 

higher order terms will introduce high-order dispersion and diffusion.   Thus, the response 

inside the dielectric will be decaying as z~a, a > 1/2. The achieved value of a depends on 

the pulse frequency content, the pulse shape, and on M.   Explicit solutions will be given 

for M = 1 whence the short- and long-time response respectively satisfy a telegraphers 

equation and an advection-diffusion equation. For this case we will deduce the 0{C0T) size 

of the "skin-depth" for pulses, and the asymptotic decay rate r~1/2 with depr.h of the peak 

electric field, or t~^2 with time. These results are verified with a numerical simulation in 

Section 5. The rate of decay determined herein for pulsed electric fields may be of interest to 
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workers in the fields of hyperthermia or ground penetrating radar. The signals used in these 

technological areas are continuous waves and as a result the electric field in the dielectric 

(tissue or ground) decays exponentially with depth [7] due to the imaginary part of the 

frequency-dependent permittivity. Our work suggests using pulsed electromagnetic waves to 

circumvent shortcomings associated with use of continuous waves in such applications. 

2. Formulation 

A Transverse Magnetic pulse is obliquely incident on a homogeneous dispersive half-space 

from the air side (z < 0) at an angle <f>ine with the normal to the air/dielectric interface. 

The dielectric occupies the half-space z > 0. The equations governing the scattering and 

propagation of the incident pulse are the time-domain Maxwell's equations coupled, thru 

the electric field, to M ordinary differential equations that describe the evolution of M 

orientational polarization mechanisms (Py
n; n = 1,..., Af, see (1)) of Debye type. They are: 

dHx     dEy 

^ dt " dz 

dHz        dEy 
/io dt  ~     dx 

dEv     dHx 
e°e°° dt " dz 

dHz 

dx 

M   ßpn 

*-*   dt n=l    Ul 

dPn      1 
;.. - p.ni :    n=l... 

(3) 

.,M, 
dt       rnV*" *     -»" ... 

where e„ and \s.0 are respectively the permittivity and permeability of the vacuum, and 

Aen = e» _ £oo. Apart from eQ and pa all other parameters in (3) are obtained by fitting 

(1) to experimental data for the tissue types of interest. The incident electric field is an 

arbitrary plane pulse Ey
nc{x, z, t) = f(t - x sin <f>inc/c - z cos (f>inc/c) of duration Tp, and we 

assume it has been in contact with the interface since t = -oo. Operational considerations 

fix the incident pulse shape /, and Tp. On the interface, z = 0, the total electric field is 

given by Ey(x, 0, t) = f(t - x/v) + E'cat{x, 0, t) = g{t - x/v), where v = c/ sin <f>inc, and E'cat 

is the scattered field. Thus g is known, either by direct measurement of Ey on the interface, 

or by measurement of E'cat in the air region z < 0. In Section 3 we will show that (3) is a 

strictly hyperbolic system of p.d.e. 
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The incident pulse description along with the electromagnetic boundary conditions on 

the dielectric interface at z = 0 impose symmetry on all the fields and a change of dependent 

variables (indicated by the arrow) is possible: Ey{x, z, t) -> Ey[z, t-x/v), and Hx>z{x, z, t) -> 

Hxz(z,t- x/v). A one-dimensional system for the tilded fields can be obtained by defining 

the time-like variable £ = t - x/v, and changing coordinates (x, z, t) -*• (z, 0 in (3). Omiting 

details, we find that HM{z,l) = ^y(*,0- Through differentiation with respect to £ and z 

we can further eliminate Hx to obtain the following one-dimensional system of equations, 

d*E„       2d>E„ -1        £ &% 
•^-c2 £ a?     °°'dz2    €oocos2^^ ae 

(4) 

»T+J.*.^    n=l,...,M, 

where Coo = c/JZZ cos <f>inc is the wavefront speed in the dielectric, and c = l/^/SÄS- In 

the next section we derive from (4) a single equation for the electric field in the dispersive 

medium by eliminating all the Py
n.  Once Ey is determined the remaining magnetic field is 

It is instructive to consider here various limiting values of the rn by appealing to the 

solution of the second equation in (4), i.e., 

P;(£) = Ae" £ ±1-E,[g)dg\    n = 1,.... M. (5) 

Letting some, or all, of the rn "be large corresponds to making the approximation e~ r» /rn ~ 

(1 _ 0{^-))/rn in (5). By letting one of the relaxation times be large, e.g., take r1 » 

r», n = 2,..., M, so that (5) becomes Py
l ~ ^- J< Sy(|')*', one can model the presence of a 

zero-frequency conductivity in the medium with value a = Tieoot\\ *,.„,• The right hand side 

of (4) will have the term -<r^ and it will now be coupled toM-1 ordinary differential 

equations for the remaining relaxations. In the "infinite"-relaxation limit (rn » l;n = 

1,...,M so that Pn ~ ^/0
f £y(0#') (4) becomes a telegraphers equation for propagation- 

in a medium of constant conductivity, 

-g^-i-Er + '--8r-0' '     l) 

where aM = \  {YJL\ ^r)- In this case the "skm'dePth" extends to infinity. Alter- 

natively, one can derive the zero-relaxation limit by integrating (5) by parts and exploiting 
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the fact that l/rn -)■ oo;n = 1,...,M, to evaluate the Laplace integral f£ e* /r"* ^ ^' 

which arises. Then, all mechanisms appear in equilibrium, i.e., PJ* ~ Aen£u, and (4) be- 

comes a lossless wave equation describing propagation in a medium of nondispersive relative 

permittivity e° = £M cos2 <j>inc + EÜi Aen, 

&K. cl d*Ey = 0. (7) 

Note that now the "skin-depth" collapses to zero. 

Equations (6) and (7) Respectively set the lower- and upper-bound of the peak electric 

field inside the medium. With increasing z, Ey becomes smoother since -^ < -^, and 

(6) becomes the diffusion equation (no propagation). The field will be zero past some small 

depth. This will be the lower bound of the peak response in the original medium. On 

the other hand, (7) describes the upper bound of the response in the equilibrated medium. 

This bound is the zero frequency transmission coefficient for the interface, T(u> = 0) = 

2/(1 + v/?). We have just shown that 0 < \E£ak\ < T[u = 0), i.e., that the maximum 

response in the dispersive medium is bounded above and below by the large-depth response in 

media corresponding respectively to the "infinite"- and zero-relaxation limits of the original 

medium. 

3. The Wave Hierarchy 

In this Section we set E = Ey and Pn = P„ for simplicity. We define the following 

operators: 

Dn   =    f[ Dm (8) 
m=l    ' 
m?£ri 

M 
D   =    J[Dm.   ■ 

m=l 

To begin the derivation of (2) apply the operator D to both sides of the first equation in (4) 

and the operator Dn to the second equation there twice differentiated with f. Our working 

system now is 

n(?l*L-  2 ¥A\ -        -1        V Dd2pn 
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(9) 

DnDnP?< = ^-DnEU]    n = 1,.... M. 
« Tn 

Noting from (8) that D = DnDn we sum the second equation in (9) over n thus obtaining 

expression for the right-hand side of the first equation there in terms of the electric field, an 

i.e., 

E^ = £^">»£«- <10> 
„=! °<L n=l 

Equation (9) now becomes 

djE _c,dJE       1 f ^LDnBtt = 0. (11) 
^ee       ö*2    e~cos2&~ -i    rn 

Using in (11) the identity ±Dn = (£>" - 0{) A» = 0 - lim^ooP"}^ and the expansion 

D = E °«9f "n 
n=0 

a0 = 1 
(12) 

„-I    f    -L     v     -i-...f i-E-i-i- = i.-.»-i 

M   x 

we obtain, after rearranging the various terms, the sought after single p.d.e. for E in the 

quarter-plane: 

M 

E ßnd?-n(dU ~ c2
ndtI)E = 0;    z > 0, t > 0 

n=0 

/?0 = 1, Co = C«, 

1 M 

A -a-+^^ S A£'K" Ä{°"}); n=' ""'     (13) 
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The signaling problem is complete once we specify the initial and boundary conditions 

E[z,0) = d(E{z,0) = ... = df+1E[z,0) = 0 and 5(0,0 = s(0 respectively, and the 

radiation condition E{z -> oo,£) -> 0. Equation (13) is a strictly hyperbolic p.d.e. since 

the n = 0 term, which is the principal part of the operator acting on E, has a complete 

set of M + 2 distinct eigenvectors, one for each of the two distinct eigenvalues ±c0, and M 

eigenvectors for the zero eigenvalue of multiplicity M due to the d^ operating on the n = 0 

term. Note that (13) also holds in two- and three-dimensions for every component of the 

electric field if dzz is replaced by V2, the appropriate higher dimensional Laplacian. This 

is because the incident electric field induces the polarization so that V • P = 0 everywhere 

inside the medium. Equation (13) is valid for material parameters that are continuously or 

discretely layered in the z-direction (depth). The /?„ and c„ form the ordered sequences 

ßo = K ßi < ... <   ßn   < ... < ßM-i < ßM 
(14) 

Co = VpW(u> = OO) > Cl > ... >     Cn     > - > CM-l  >CM = Vp,U"e{uJ = 0) 

so each wave type is a member of a wave hierarchy. 

4. Analysis of the Hierarchy 

To introduce the incident pulse duration in our analysis we scale the independent vari- 

ables, £ = 4- and z = -jr, change to the new variables, and then drop the primes for 

convenience. Our working equation, factored to exhibit left- and right-going waves, then 

becomes 
At 
£ ßnT-df-n(d, - -Cndz){di + CndjE = 0, (15) 
n=0 

where Co = 1 and c„ = Cn/co. The "infinite"-relaxation limit (Equation (6)) is equivalent 

to Tp < Tmi'ra'mum whence ßM^M < 1, wl"le the zero-relaxation limit (Equation (7)) is 

equivalent to Tp > Traai,'m"m $MT
M
 > 1). The peak response will be bounded as described 

in Section 2 for any pulse duration and the response in the medium will depend on the 

frequency content of the boundary function g((). The highest frequencies constitute the 

high-order waves described mainly by n = 0 term in (15) and will propagate with the 

wavefront speed c0(= 1) which is the highest speed. In the "skin-depth" the high-order 

waves approximately satisfy d^E ~ —cQdzE since the relaxations have not had time yet 
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to respond to the incoming wave. Using this in each term in (15) except in 0€ + .CQ8M we 

determine the p.d.e. that governs this order's propagation, i.e., 

■,     M =2 _ -2 

(%+we+± Ei-ni;VrE=». <16> 
ZPo n=i C0 

where the operator djn+l is interpreted formally as n - 1 integrations of £ with respect to z. 

The second term in (16) is a smoothing operator with the n = 1 term producing exponential 

decay of E with depth. Discontinuities of g{t) will be important only near the interface 

across the characteristic ray z - c& = 0 and will be exponentially attenuated for models 

with M = 1. Models fitted to data with M > 1 will smooth any discontinuity in the incident 

pulse. 

Bands of lower frequencies around the relaxation frequencies are each governed by the 

intermediate terms 1 < n < M-l in (15). Because experimental data indicates that ßM » 1 

(ßM ~ O(1013) for an M = 1 model of water) these intermediate orders are unimportant in 

comparison to the low-order waves described by the n = M term. From the dependence of 

ßM on the angle of incidence we also deduce that the amplitude of the low-order waves (and 

hence of the main response) will be maximal for pulses that are normally incident. Due to 

the largeness of ßM the low-order waves approximately satisfy deE cMdzE and using 

this in (15), except in the term dt + cMdz, the p.d.e. governing the propagation of this wave 

order is _2      _2 

,«     ,   -     o^n   ,    (5M) V-> ,_«sM-nQ  TnCn~CMdM-n+lE        g (1?\ 

Equation (17) describes diffusive-dispersive propagation with speed cM (~ 1/9 for the M - 1 

water model). Dispersion comes from those terms of the second part of (17) which contain 

odd number of derivatives of E with respect to z, while diffusion comes from terms with 

even number of z-derivatives of E. The response is smooth across the sub-characteristic rays 

z-CnZ^ constant; n = 1,.... M. The largeness of ßM indicates that low frequencies are 

important in such problems. These frequencies need not be present in the problem through 

a zero-frequency component in the incident pulse, rather they appear through the spectrum 

of the envelope of incident pulses which always contains low frequencies.   One could have 

derived (17) by using the slow variables z   = t<{z - cMt) and t' = e2^ (0 < e « 1) in the 

same way long-wave approximations are derived.  In such a derivation the particular value 

of 7 will depend on whether M + 2 is even or odd. 

In this paragraph we consider (16) and (17) for M = 1 (our water model).   For this 
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medium we obtain explicit solutions describing the behavior of the response and we are 

interested in deducing qualitative results from them. These results will be validated with 

a numerical simulation in the next section for fa^ = 0 (£ = £).   The equation for the 

small-depth response is 

(di + dz)E + ±ß1Tp(l-?1)E = Q, (18) 

while for large-depth it is 
1-S? (d( + c\dz)E - ^-d]E = 0. (19) 

The constants are cx = -4^-, ßx = J(l + tooCt'»,„<)' and Ae* = e' ~~ e°°- Values for c»> e°°> 

and r for water are given in the introduction. Note that (19) is parabolic while the (18) and 

the full problem are hyperbolic.   The solution of (18), subject to the boundary condition 

E(z,0=g((-z)e-iiW-V\ ' (20) 

It shows that the contribution of the exponentially decaying part of the response will be 

negligible after a depth 0{CQT) m (in dimensional variables) which we name the "skin-depth." 

The solution of (19) is 

where h{() is related to the inverse Fourier transform of the spectrum of g{£) after the 

highest frequencies have decayed in the "skin-depth." The origin of £ is the first time after 

which the response evolves according to (21) and is approximately 0(T) sec. The response is 

diffusing around the sub-characteristic z = c^', and its peak will be on that ray. Thus the 

frequency content of the response is constricted through diffusion. The kernel in (21) acts like 

a delta-function because ßi S> 1. This leads to the prediction that on the sub-characteristic 

ray the peak response for an arbitrary incident pulse will be decaying as as z~a, a > 1/2, or 

as £'~a (this can be obtained by remembering that also £ — z/ci on the sub-characteristic 

ray), i.e.,  : 

E^^\lMr^W)zjr] Z = C^- (22) 

For pulses with h(Q) = 0 (21) is evaluated after /i(/c) is expanded in a Taylor series around 

zero. 
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5. Numerical Experiments 

Now we validate the results of the previous section for the M = 1 Debye model of water, 

namely the predictions that the response is exponentially decaying in a thin layer (the "skin- 

depth") where it travels with the infinite-frequency phase velocity o = c, and that past 

this layer it travels with the zero-frequency phase velocity and is a diffusion wave whose 

peak decays algebraically. The propagation of a normally incident [<f>inc = 0°) square pulse 

of Tp = 50 psec is simulated by solving the system (3) with M = 1.   The discretization 

parameters are chosen with» the aid of our previous work [9] and the results shown contain 

no numerical artifacts. The numerical source is in free-space, 5 cells in front of the interface, 

and there are 10 cells between the left-hand side radiation condition (which is in free-space) 

and the dielectric. We record time-traces of the response every ten spatial cells starting at a 

depth of 10 cells in the medium, and subsequently search in the data for the peak response 

which we save along with the location (**-*, *""*) of its occurence.   The computational 

domain is taken to be large so that artificial reflections from the right-hand end of the grid 

do not reach the recording locations in the time window of interest. 

Fig. 1 shows the {t,z) location of the peak of the response in the half space for the 

first 80 psec of evolution. The z-axis offset at t = 0 corresponds to twenty cells (left-hand 

radiation condition to first recording depth). We see that the peak response indeed travels 

with the free-space speed of light as predicted. The prediction is graphed as a dotted line. 

The gap in the curve (between the parallel lines) is due to the movement of the peak from 

the leading edge of the pulse to the trailing edge. The "data in that interval was deleted 

since the apparent slow-down is not relevant to the speed of propagation of the peak. Past 

50 psec the pulse peak starts slowing down. This happens up to about 75 psec whence the 

speed of the peak has achieved the zero-frequency phase velocity. This is shown clearly in 

Fig. 2 where the evolution of the peak's location past 80 psec is shown. The slope of the 

straight line is c/V8Ö35 and this is very close to the observed slope. It takes a "skin-depth" 

of 0(CT) m (~ 2.4 mm) to achieve this slow speed. 

Fig. 3 shows the decay of: the peak of the response for 0.05 < z < 0.25 mm during 

the early evolution. The Figure shows that the predicted exponential decay, i.e., the dotted 

Hue drawn according to (20), is observed in the simulation results (circles). Finally, Fig. 4 

depicts the decay of the pulse peak for z > 0{cr) m, i.e., past the "skin-depth". On the 

graph we indicate with a dashed line the algebraic decay W predicted by (22) with z = at. 
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Figure 1 The (t, z) location of the peak of the response during the first 80 psec of evolution. 

The slope of the dotted lines is exactly c as predicted by Eq. (18). The separation of 

the two parallel lines is exactly the pulse duration. 
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Figure 2 The (*,*) location of the peak of the response for t > 80 psec. The slope of the 

dashed line is the prediction Ci = c/v80.35. 
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Figure 3 The small-depth decay of the peak of the response as' a function of z. The dotted 

line indicates the predicted exponential decay and the circles indicate the observed 

decay. 
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Figure 4 The large-depth decay of the peak of the response as a function of z. The dashed 

line indicates the predicted algebraic decay and the circles indicate the observed decay. 
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The observed decay is plotted with open circles. 

6. Ramifications for Numerical Schemes 

In summary, we have found that the pulse response in a relaxing dielectric is mainly a 

diffusion wave traveling with the zero-frequency phase velocity, CM , of harmonic waves, and 

that the fastest speed c0, i.e., the infinite-frequency phase velocity, is important only in a 

thin layer near the air/dielectric interface in which the response is hyperbolic and decays 

exponentially. As an example, for the M — 1 model of water permittivity this thin layer is 

O(10~3) m, and Ci ~ Co/9. Thus, one is faced with a stiff problem in the time direction due 

to the exponential decay in the "skin-depth," and with the existence of disparate wave speeds 

in well defined spatio-temporal regions. In addition, the problem is asymptotically singularly 

perturbed since for large z and t it changes type from hyperbolic (18) to .parabolic (19). In 

this section we indicate how these findings can be used to correctly set the discretization 

in existing numerical methods for pulse propagation in relaxing media. Also, we present 

an argument in favor of using high-order finite difference schemes which are second-order 

accurate in time and fourth-order accurate in space. 

We have shown in [9] that the timestep, At, for Leapfrog based Debye schemes is required 

to resolve the shortest relaxation timescale rmm for reasonable accuracy over long-time sim- 

ulations. This is due to the time stiffness in the problem for realistic media and to the fact 

that simple A-stable approaches (the trapezoidal method) were used in those methods to 

discretize the ordinary differential equations for the polarization. 

Next we show how to chose the spatial resolution in light of the existence of multiple 

speeds in the dielectric. In explicit finite difference schemes for equations with multiple wave 

speeds the stability requirement is based on the highest speed in the problem, CQ, while the 

spatial resolution is based on the slow speed, CM- Due to the large magnitude of PM the 

slow speed will be dominant in realistic models of materials. In the system (3) the other 

speeds" c,,, 1 < n < M, are not evident. It must be noted here that the slow speed is not 

characteristic and that it develops during the evolution. This is contrary to what happens in 

elastic wave propagation where the two speeds (compressional and shear) are characteristic 

speeds. If one considers a fixed frequency / then we see that the wavelength associated with 

the slow speed.is smaller than that associated with the fast speed, thus, a small length scale 

develops in time. If we assume that the M+l wave types are decoupled then the timestep for 
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each type is determined by A«/Az„ = vfc», n = 0,.... M, where u is the Courant number. 

Thus, for a fixed timestep and Courant number, the spatial steps for the most important 

waves in the problem are related as 

AzM = ^Az0. (23) 
Co 

We deduce that the disparate speeds require a reduction of the Courant number since one 

would have to use AzM from (23) in the stability restriction c0Ai/Az,vr = v to obtain the 

timestep, i.e., coAi/Az0 = vcM/cQ < v, where u is the value we would have used if we only 

knew of the characteristic speed. Typically, 0.1 < CM/CO < 0.5. 

Finite difference schemes which are second-order accurate in both time and space, the 

so called (2 - 2) schemes, require that the Courant number used be the maximum allowed 

for stability (u = 1 in one dimension) in order for them to introduce the least phase error. 

Here we have shown that once the spatial resolution is set according to the slow speed one 

cannot get away from having to reduce the Courant number. However, (2 - 4) schemes that 

are second-order accurate in time and fourth-order accurate in space are stable for v < 6/7, 

operate well for 0.1 < u < 0.5, and they are overall fourth-order accurate for At ~ 0(l)Az2. 

This last relationship between the time and the spatial steps in the high-order scheme is like 

the diffusion scaling t ~ 0(l)z2 which appears in our problem asymptotically. In any case, 

due to the time stiffness one desires to use a small time step by reducing the Courant number 

or by increasing the spatial cell size and this can be done with (2 - 4) schemes. If (2 - 2) 

schemes are used the time stiffness will also affect the Az by forcing it to be extremely small. 
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PHASE ERROR CONTROL FOR FD-TD METHODS OF 
SECOND AND FOURTH ORDER ACCURACY 

Abstract 

For FD-TD methods we determine the spatial resolution of the discretized domain 
in terms of the total computation time and the desired phase error. It is shown that 
the spatial step should vary as Ax ~ g [^]lf' in order to maintain a prescribed phase 
error level e^ throughout the computation time tc, where s (=2 or 4) is the spatial 
order of accuracy of the scheme and g is a geometric factor. Significantly, we show that 
the thumb rule of using 10-20 points per wavelength to determine the spatial cell size for 
the standard scheme is not optimal. Our results are verified by numerical simulations 
in two dimensions with the Yee scheme and a new 4th-order accurate FD-TD scheme. 
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1.   Introduction 

In finite element methods for the frequency-domain Maxwell's equations the electrical 

size of the computational domain is related to the quantity k/S. = 2ir/Nppw, where k is the 

wavenumber, A is a typical spatial cell size, and Nppu, is the points per wavelength. In these 

methods, in order to maintain a constant error level, iVppu, should increase as the domain's 

electrical size increases [l]-[3], thus higher order elements should be used on electrically large 

problems since they require a smaller Npp^, for the same error in comparison to the standard 

elements. Herein, we consider time-domain FD-TD methods and derive the iV,^, required 

so that only a prescribed amount of phase error accumulates in a given computation time 

interval. We will consider the standard Yee scheme [4], hereafter referred to as the (2,2) 

scheme, and a 4th-order accurate in space FD-TD type scheme [8], hereafter named the 

(2,4) scheme since it is 2nd-order accurate in time. 

We will derive and numerically validate the estimate 

JV^-aMH-]* (1.1) 
H 

for determining the spatial discretization in two dimensional FD-TD schemes of spatial order 

of accuracy s (=2 or 4 here). In (1.1) 9 is the angle of propagation with respect to a grid axis, 

P is the number of periods in time for which the computation will proceed, and e^ is the 

maximum phase error in radians that will be allowed to accumulate over the computation 

duration for the highest frequency in the problem. From tc, the actual computation time, and 

u.} the highest frequency that is expected to be present in the calculation it is P = tcu;./27r. 

An estimate for w, can be obtained by considering the initial pulse frequency content, while 

e^ and tc are defined a priori.  Our derivation will start from the semi-discrete Maxwell's 

equations thus our estimate will be formally valid in the case v -C l/v2, where u = cAi/A 

is the Courant number of the fully discrete scheme.   However, we will show in Section 2 

that the dependence of the phase error on P and Npj^ as shown in (1.1) also holds for fully 

discrete schemes.  The implication of (1.1) is that methods of higher order of accuracy in 

space can achieve the same error over a fixed computation time interval as the Yee scheme 

but with a larger spatial step (less memory) and less amount of timesteps.   (1.1) will be 

verified by numerical simulations of mode propagation in a metallic waveguide (a truly two 

dimensional test case) with the (2,2) and (2,4) FD-TD schemes. 

The first (2,4) and (4,4) schemes on two and three dimensional staggered meshes appeared 

in [5] for subsets of Maxwell's equations in the time-domain.    Reference [6] presented a 
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method for achieving 4th-order time accuracy without requiring the introduction of extra 

time levels of storage. In [7] a two dimensional (2,4) FD-TD type scheme was presented for 

the elastic velocity-stress vector wave equations. References [8] and [9] also present 4th-order 

schemes for Maxwell's equations. 

2.   Dispersion Analysis 

Our working equations are the two dimensional Maxwell's equations for Transverse Mag- 

netic (TM) polarization in« an unbounded domain, 

dHy      dEz 

dt dx 

dHx dEz 

dt dy 

dEz _ (dHy     dHx 
- \~ÖT A..  '> 

(2.1) 

8t      v dx        dy- 

but our analysis can be applied to Transverse electric (TE) polarization, and to the general 

three dimensional equations. (2.1) results from the dimensional Maxwell's equations by scal- 

ing the electric and magnetic fields respectively on ^/T0 and ^, and subsequently scaling 

space and time respectively on the'speed of light c and its inverse c"1 so that \k\, the magni- 

tude of the wavevector k, and u are synonymous quantities. An exact solution of (2.1) corre- 

sponding to a spatial Fourier component is the vector M = {Hy(x, y, i), Hx(x, y, t), Ez(x, y, t)) 

= (/i„(i)>Mi)>e*(i))Te,(*,'x+fcvV)> where tne superscript T denotes transpose, and k = ikx + 

'jkv is the wavevector. We determine the hy{t),hx{t),ez{t) by substituting in (2.1) and solv- 

ing the resultant Ordinary Differential Equations (ODE) for the time dependence with initial 

conditions given by the constant vector M(x,y,0). The resulting plane wave solution is given 

by 
f MO)  1 

M = > e ,,-|fc|(x«n0+yco.fl-O (2.2) Mo) 
ex(0)   J 

In (2.2) we have used Jfe, = |Jfe|sin0, ky = |fc|cos0, with 9 being the angle of propagation 

with respect to the vertical y-axis of the grid. The analysis now proceeds by considering 

2nd- and 4th-order accurate finite difference approximations for 8/dx and d/dy in (2.1). 

Representing the spatial derivatives by half-cell centered 2nd-order accurate finite differ- 

ences (FD-TD), denoting the resulting approximate solution by Mapp, and substituting it in 
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(2.1) we obtain the ODE system 

dt 

S!3e'¥ = -i(eifc»A - l)e^(0 (2.3) 
dt Av 

,I.A 

with A being the cell widt^h (taken to be the same in the x and y directions), where space 

is discretized as (z,y) = (mA.nA) with integer {m,n). Upon elimination of the magnetic 

components from (2.3) we get a second-order ODE for the time evolution of the electric field. 

Solving this ODE we find that (using A = fc|j^  ') 

BT(,,,,I) = ei(0)*-'.-'^N/-^-'-"'<^J-»'. (2.4) 

The phase error is defined as the ordered difference between the exact and numerical 

phase, e^ = $«ad - ^numerical- Subtracting the phase of (2.4) from that of the electric field 

component in (2.2) we find the phase error produced by the spatial finite differencing to be 

N„ 
e, = H*l*[l - ^/tf+tf 1 

.    7rsin0 ,_ _, 
Px = sin(— ) (2.5) 

l'ppw 

7T COS 9. 

Pv = sm(_lv
: )• 

Thus, ej, grows linearly with time, t, for a given discretization that is fixed at the beginning of 

the simulation. For an actual computation one would set \k\ to be the highest wavenumber, 

|Jfe«|, in the problem for which we want a preset accuracy to be maintained up to the end 

of the time stepping. From (2.5), using t = te and the Taylor series of the sin function 

for Tr/Nppu small, and keeping only the first term in the series for which e^ in (2.5) is non- 

vanishing we obtain the approximate dependence of Nppu, on the allowed phase error, the 

total computation time, and the angle of propagation, as follows (using \k.\tc = 2TVP) 

N^ ~ (l)M(5in40 + CO5
40)H-)'- (2-6) 
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The phase error of the fully discrete scheme can be found using the methods in [12]. In the 

notation used here it is given by 

e, = -2*P[1 - ^ sin-Wp'+P*) ] (2-7) 

where u is the Courant number, and p., p„ are as in (2.5). It is immediately obvious that 

(2.7) reduces to (2.5) for small v regardless of the size of TT/JV^.   (2.6) is subsequently 

recovered for n/N^ small. Additionally, for TT/N^ small and v arbitrary it is easy to show 

that 

^«m->J£T# ~ l-i(-f-)3(Wö+c034ö) + ^(]f-)
4(3^+co3aö)-..., (2.8) 

so, by neglecting 4th order and higher terms, (2.8) reduces (2.7) to (2.6) regardless of the 

Courant number v. Thus, (2.6) also holds for the fully discrete scheme with arbitrary u as 

long as ir/Nppw is small. 

The 0(A4) accurate half-cell centered discretization for the spatial derivatives in (2.1) is 

given by 

|iWm+^ - sif </- - w - s e- - '-■» (2'9) 

where { = x or y, and for electric variables m is an integer while for magnetic variables 

m - m' - I with m an integer. When discretized in time (2.1) will result in the (2,4) 

scheme given by the difference equations [2] below: 

H?Hi + \>i) = #"*(* + i J) + 7(C(^(* + Li) - ^(*.i)) 7 

tfxn+"(x\i+i) = Är*(t,i + \)- i[c(E:(i,j+1) - aw,i)) - 

i?(^(i,i + 2)-^(i,i-l))] 
(2.10) 

iKffr^ + f.i)-*« 3(i-2''■)>- 

C(^i(M+£)-tf^.i-4))+ 

III - 5 



where 7 = Ai/A, ( = 9/8, and 77 = 1/24. Altering 77, C one obtains the (4,4) FD-TD scheme 

[8] which can be analyzed with the methods herein. The semi-discrete case is recovered by 

letting Ai -> 0 in (2.10). Proceeding as for the (2,2) scheme, we obtain the phase error for 

the (2,4) scheme 

e,   =   -IW-^V/PT+^I « 7T      * 

9  .    Trsinö        1   .  ,37rsinfl 

9    .    .7TCOS0. 1      .      37TCOSÖ 

where |A| = |Jb,| (the magnitude of the maximum wavenumber in the problem). Setting 

|Jfc.|ic = 27rP, and expanding the sin functions for small values of ir/Np^ (2.11) becomes 

^-(^(«»•^«»'^(r)*- (2-12) 
The phase error of the fully discrete scheme (2.10) can also be found. In the notation 

used here that phase error is again (2.7) but with px and py now given by those in (2.11). 

Arguments similar to those after (2.7) apply here too for the relation of the exact error to 

(2.12). 

Relations (2.6) and (2.12) are the main result of this paper since they give an estimate for 

Nppv based on a priori selected computation parameters. Figure 1 shows the Np^ required 

to maintain a phase error of 0.1 radians (~ 5.73°) over P time periods of computation 

for a harmonic wave propagating along the grid axis (9 = 0°) and along the grid diagonal 

(9 = 45°). The benefit of a high order spatial differencing scheme is apparent from this 

Figure particularly for long time computations (P large) with such a severe phase error 

restriction. Significantly, Figure 1 indicates that for the standard Yee scheme the thumb 

rule of Nppv = 10-20 will be good for computations up to only P = 3 for a phase error of 

5.73°. Figure 1 also applies to the fully discrete schemes used with any u whenever ir/Ny^ 

is small. Since in our analysis u is the same (~ 0) for both the (2,2) and (2,4) methods 

another deduction from the Figure is that the higher order methods will allow a larger time 

step. 
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Figure 1 The dependence of N^ on P for an allowed phase error e* = 0.1 radians (~ 5.73°) 

and two angles of propagation with respect to the grid axis. 
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3.   Numerical Validation 

We consider a mode propagating in a metallic air-filled waveguide. The system (2.1) is 

solved numerically on the domain 0 < as < 1, 0 < y < 1, 0 < t < tc, together with Dirichlet 

boundary conditions on the waveguide walls Ez(x,y = 0,t) = Ez(x,y = 1,£) = 0, Hy(x,y = 

0,f) = Hy(x,y = l,i) = 0 for 0 < x < 1, and periodic boundary conditions along the 

direction of propagation Ez(x = 0,y,t) = Ez(x = l.y.i). Hy{x = 0>y>0 = Hy{x = l>2/>f) 

for 0 < y < 1. An exact solution representing the I—th mode is easy to find with standard 

methods [11]. In the following, k£ = Jk2 — (In)2 is the longitudinal wavenumber, and I = 

1,2,... is the waveguide mode index. This model problem provides a truly two dimensional 

test of our analysis. In a well resolved computation the truncation error is negligible, the 

only error source being phase misrepresentation due to the differencing. Figure 2 shows for 

the Yee scheme the effect of phase error (only 5.12°) on the relative error for a computation 

in the waveguide designed with the analysis herein. Although visually (Figure 2a) the phase 

error seems to be responsible for just a small shift in the computed field we note (Figure 

2b) its large effect on the relative error. The reliability of interior field calculations depends 

on the relative error they contain. The main problem here is that the zeros of the field are 

not computed correctly due to the (small) phase error although the absolute field values are 

very accurate. 

The Dirichlet conditions for the standard FD-TD posed no problem since it is enough to 

apply the boundary condition Ez = 0 on the waveguide walls by prescribing the Ez nodes at 

y = 0, 1 and 0 < x < 1, for the boundary condition to be automatically satisfied to 2nd-order 

accuracy by the differencing strategy. However, the implementation of boundary conditions 

for the (2,4) scheme is not so straightforward. The spatial stencil of the 4th-order method is 

twice as long as that of the standard FD-TD, thus special treatment is required for electric 

and magnetic nodes adjacent to the metallic waveguide walls. After alot of experimentation 

we used the symmetry properties of the electric and magnetic fields with respect to the 

waveguide walls (the electric field is an odd function of y, while the magnetic field is an even 

function of y with respect to the walls) to implement the Dirichlet condition for the (2,4) 

method with 4th-order accuracy. Matching the Yee scheme 2nd-order differencing to the 

(2,4) interior stencil in order to compute the nodes adjacent to the computational boundary 

proved to be unstable. 

The model problem is discretized with the (2,2) and (2,4) schemes in order to obtain the 
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Figure 2 a) Electric field along the waveguide at P = 10, y = 0.5, computed by the 

standard Yee scheme with 5.12° phase error (solid line), b) Error relative to the exact 

solution solely due to the "small" phase error allowed. 
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fields at the final timestep corresponding to time tc = P*£, where P is the number of domain 

traversal (periods) of the mode whose phase speed is £-1. The total number of timesteps 

is NMAX = tc/At = P * N^ * Hu. We set k = V/5TT. Both the standard FD-TD and 

the (2,4) schemes are initialized by prescribing Ei=l{x,y,t = 0) and Hl
x=y

l{x,y,t = -At/2) 

from the exact solution thus obtaining the first waveguide mode traveling to the right along 

the x-axis. The numerically computed fields should exactly reproduce the initial conditions 

after the completion of NMAX timesteps if there is no phase error. However, phase error 

accumulates during the actual computation, and we measure it by assigning 360/iVpp«, degrees 

in each spatial cell and using linear interpolation to find the field node at time t = tc which 

now has shifted due to the phase error. For both schemes v = 0.01 (< l/v7^)- The ceU size 

is determined from the 0 = 0° curve in Figure 1 for P = 10 and e* = 5.73° (= 0.1 radians), 

and corresponds to N^ = 32 for the (2,2) scheme and N^ = 8 for the (2,4) scheme. Since 

At = i/A the 4th-order scheme required one fourth the amount of timesteps required by the 

standard scheme per computational period (715.5 timesteps for the (2,4) scheme hence we 

will measure e^ at even multiples of the period). 

Figure 3 shows for the Yee scheme the predicted (dashed line), obtained from (2.6) with 

0 = 0°, against the calculated (plus) phase errors as functions of computation time measured 

in integer multiples of the period corresponding to the I = 1 mode. We see the predicted error 

was slightly larger than the one encountered in the computation. This can be explained by 

considering that the particular waveguide mode can be thought to be composed of two plane 

waves traveling to the right at an angle 9l=1 = 90° - tan"1 (1/2) with the y-axis. Therefore 

the Nppu, used in this experiment was generous. The measured phase error for the 4th-order 

scheme (stars) can also be seen to follow the predicted phase error (solid line) obtained from 

(2.12) with 9 = 0°. Again, the measured error was slightly less than the prediction for the 

same reason as for the Yee scheme. 

4.   Summary 

In this paper we considered the phase error due to the spatial discretization in the two 

dimensional FD-TD method for Maxwell's equations. We derived how the cell size should be 

chosen so that only a preset phase error accumulates during a given amount of computation 

time. Truly two dimensional numerical simulations validated the analytical results. Although 

the derivation is formally valid for cases where the numerical computations are performed 
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Figure 3 Computed e^ versus P for the Yee scheme (stars) and the (2,4) scheme (plus), 

where v = 0.01 in both. The theoretical curves are for the Yee scheme from Equation 

(2.6) for N^ = 32 (dashed line given by |e*| ~ 0.5783P), and for the (2,4) scheme 

from Equation (2.12) for N^ = 8 (solid line given by |e*| ~ 0.642P), both for 0 = 0°. 
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with v small, we have shown the scaling of the error to hold for arbitrary v provided ic/N„„, 

is small. Employing a small u in the (2,4) FD-TD is necessary if any benefit is to be gained 

since the truncation error is 0{At2 + A4) so it should be At ~ A2 for an overall 4th-order 

accuracy to be obtained. Also, using a small u will allow for a manageable number of spatial 

grid cells in the FD-TD for very high frequency applications, for dispersive media (see [13]), 

and for any problems that require an extremely small timestep.   It has been determined 

that the number of spatial cells can be further reduced by using a 4th-order accurate spatial 

scheme thus allowing electrically larger problems to be addressed given a fixed quantity of 
« 

computational resources and of permitted phase error. 
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A General Description of Propagation and Scattering for 

Electromagnetic Pulses in Dispersive Media 

Thomas M. Roberts and Peter G. Petropoulos 

We develop some new methods for describing pulse propagation for general disper- 

sive media, using a Debye model for water as an example. Short-pulse, long-pulse, 

short-time, and long-time approximations are presented. We explain, a factor-of- 

nine effect in the speed of waves in water, which seems to have been previously 

unnoticed. We also study the following problem: Knowing only the peak amplitude 

and power density of an incident pulse, what can be said about the peak amplitude 

of the propagated pulse? We provide sharp upper bounds for the propagated am- 

plitude and reduce the computation of those bounds to a calculator exercise. These 

bounds may be useful in controlling the electromagnetic interference or damage 

produced in dispersive media. 
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1. INTRODUCTION 
The computation of electromagnetic pulses in dispersive media is a highly devel- 

oped field. For instance, a single paper,1 published in 1976, contains numerics for 

the propagation of TE- and TM-polarized electromagnetic pulses that are incident 

obliquely on an inhomogeneous, anomalously dispersive medium.  Computational 

electromagnetics has developed so extensively since 1976 that it now appears that, 

given enough computer resources, one can compute the propagation of just about 

any single pulse through just about any single medium. But these studies of single 

pulses, even of millions of single pulses, have not demonstrated that every microwave 

pulse travels through water2 with one-ninth the speed of light in vacuum. That fun- 

damental factor-of-nine effect, which appears to have been unnoticed until now, is 

established here by studying an electromagnetic wave equation and its scattering 

operators, which are the natural places to find broadly applicable rules that govern 

propagation. We will show that the time of arrival of transmitted pulses in anoma- 

lously dispersive media is related to a slow speed given by the DC phase velocity in 

each medium. This paper has several other new results, which relate to the widths 

and peak amplitudes of pulses, and to quantities that resemble power density. These 

new results, concerning broad classes of pulses, are validated here using standard 

numerical methods; a new numerical method for estimating errors is also developed 

and used, and some results of laboratory experiments on pulse propagation in a 

muscle-equivalent material are explained. Our results will be shown to be helpful in 

proposing optimum sample lengths to be used in Time Domain Spectroscopy studies 

for the accurate determination of the infinite-frequency and static permittivities of 

Debye-type dispersive media.3-4 Also, as shown in Section 4, our results can form 

the basis for a sensitivity analysis of the dependence of the medium response on 

the parameters obtained from different fits to the same band-limited experimental 

data. 

This work was done, in part, to assist in the development of health-and- 

safety regulations for electromagnetic pulses in human environments. Our goal 

was to develop methods to support the regulation of basic quantities such as the 

peak amplitude and the power density of incident pulses, so that it would not 

be necessary to regulate every detail of a pulse's time trace.   Toward that end 
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we formulated a problem in making inferences from incomplete data.   We asked: 

Knowing only the peak amplitude and power density of an incident pulse, what can 

be said about the peak amplitude of the propagated pulse?   We also asked what 

the incomplete data would imply about the values inside the dispersive medium 

of the time derivative of the magnetic field H and of a different quantity that is 

related to power density.   Of those three quantities—peak amplitude and power 

density and dtH—it is dtH whose size is most closely linked to the time scale of 

short-risetime pulses; further, dtH is particularly important because it would be 

largely responsible for electromotive-force currents in any circuit-like structure that 

is inside a dispersive medium.  Our results in this matter of incomplete data are 

quite concrete. We will show, for instance, that the peak amplitude of the electric- 

field part of a propagated microwave pulse is always less than 0.150 V/m, for depths 

greater than 2.00 mm in water, whenever the incident electric pulse's peak amplitude 

is less than 1.00 V/m and its power density is less than 5.29 x 10-14Watt/m2, 

regardless of the other details of the microwave pulse's time trace. We have similar 

results for power density and for dtH. The development of such general rules for 

pulse propagation may put the computational basis for pulse-safety standards on as 

firm a basis as for the existing standards5 for continuous waves and periodic wave 

trains. 
This paper's dispersion models and time scales are motivated by laboratory 

experiments. We use a one-term Debye6 model that fits laboratory data for water2 

up to 100 GHz, and our numerical tests involve pulses with or without DC-frequency 

content whose time scales are characteristic of short-pulse radar. Our methods 

apply to all other Debye-like media, and can be generalized for the two-term and 

five-term Debye models that fit laboratory data for muscle and muscle-equivalent 

materials.3-4 Our methods can also be generalized for non-Debye media. 
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2.    FORMULATION AND RESULTS 

A. PDEs 

The equations governing the scattering and propagation of an obliquely incident 

pulse on a homogeneous dispersive half-space occupying z > 0 are the time-domain 

Maxwell's equations for the fields Hx,Hz,Ey. This set of equations is coupled through 

a polarization current (^sf) to a differential equation that describes the evolution of 

an orientational polarization (Py) mechanism of Debye type8 (a relaxation process): 

Tln + P* = Ae#y, where Ae = e, - £«,, e, and e«, are respectively the zero- and 

infinite-frequency relative permittivities, and r is the dielectric relaxation time. This 

o.d.e. together with the constitutive law, Dy = e0{e00Ey + Py), result in the model 

frequency-domain relative permittivity e(cj) = £«, + j^;, where e0 is the permittivity 

of vacuum. This model is fitted to frequency-domain experimental data for a range of 

frequencies u> in order to fix the various medium parameters. Typical values for water 

in the microwave frequency range are e, = 80.35, £<» = 1-00, r = 8.13 psec. The 

phase velocity of each frequency component in such a medium is vpha"(w) = c, , 

with c being the speed of light in vacuum. In the subsequent analysis vpha'e{0) and 

vphate^OQ^ ^yjjj arise. Finally, operational considerations fix the pulse shape, /, and 

its duration, Tp. 

The electric field incident on the half-space from the air side (z < 0) is a 

plane pulse -E^x, z, t) = f(t-x sin fcnc/c - z cos &„-/c) of duration Tp. We assume 

the pulse has been in contact with the interface since t = — oo. On the interface, 

z = 0, the total electric field is Ey(x, 0, t) = g(t — x/v) where v = c/ sin ^inc; the 

total field is known by direct measurement of either the field on the interface or of 

the scattered field in z < 0. Defining the time-like variable £ = t - x/v we find 

that Ey{x,z,t) = Ey(0,z,t) -> Ey(z,fl, #,,,(x,z,0 = tfx,x(0,z,O -> Hx,z{z,t), and 

that Hx(z,Q = ^-J5„(z,£). Changing coordinates (x,z,t) ->• (z,£) in the resulting 

one-dimensional system, and eliminating Hy through differentiation with respect to f 

and Py by using the operator d$ + -, we obtain a single third-order partial differential 

equation for the electric field E — Ey (shown in factored form), 

Wt ~ CÖ,)(Ö{ + c0dz)E + 2(Ö£ - cydz)(dz + Cldz)E = 0,    z > 0, (2.1) 
T 

where c0 = c/(^/eZcos 4>inc), ß = I+AE/^«, cos2 <j)inc), and Q = c0/*/ß. For <^)nc = 0, 
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£ = t. The signaling problem for (2.1) is completed by giving the boundary condition 

5(0,0 = 9{i)> and the initial data E{z,0) = Ei{z,0) = Eti{z,0) = 0. Hz Mows 

once E is known, and Hx = j-jS2^1^'- The foU°winS results m derived in 

Subsection 3A. 

Equation (2.1) describes the propagation of all possible waves of different or- 

ders, and their corresponding speeds, that can be excited by an arbitrary pulse. The 

coefficients exhibit an explicit dependence on the angle of incidence, and on the pa- 

rameters that describe the medium.   It is a strictly hyperbolic7 partial differential 

equation since the principal part of the operator has real distinct eigenvalues (three 

eigenvalues, ±0, and 0), and a complete set of eigenvectors. Causality follows from 

this last sentence. The characteristic contributed by the zero eigenvalue can be visu- 

alized by considering that Ö« + c2dz = 6t when c2 = 0. The main feature of (2.1) is the 

two wave equations exhibiting distinct speeds, c0 and cx. Pulse propagation is gov- 

erned by these two speeds in mutually exclusive spatial regions. Disturbances mainly 

described by the principal part of the operator in (2.1) will be called high-order waves, 

while those described by the remaining operator will be called lower-order waves.8 The 

speed d, while not a characteristic speed (it is sub-characteristic, a < c0), is impor- 

tant in the analysis and has several ramifications for experiments. Also, cx = vphase{0) 

35!^ = ^"(co); i.e., the main disturbances will propagate with the distinct speeds 

which are equal to limiting values of the phase velocity. It is worthwhile to empha- 

size that experimental data indicates Cl.< C, e.g., Cl ~ 0.1116co for water in the 

microwave range; the problem is stiff so the pulse travels in the half-space with either 

of two speeds that are disparate. 

The high-order term describes the dominant behavior for depths z < 0(COT) 

m, and the effect of the lower-order term on the the high-order waves is an exponential 

decay with z. The penetrating pulse propagates with speed c0 in this shallow depth 

(~ 10"4 m for water) which we name the "skin-depth" for pulses since it is remi- 

niscent of the well known frequency-domain concept.3 Prom experimentally obtained 

data typical of tissue r = 0(10"") sec, and ß = O(10). Thus f is large, and we 

expect the bulk of the penetrated pulse to travel with the speed Cl since (2.1) is then 

approximately Ea - c\Ezz = 0. The main disturbance will be a lower-order wave. 

The effect of the high-order term on the lower-order waves, which travel with speed 



ci, is diffusive in character and important for z > 0(cor) m. The main response 

diffuses around the ray z, — cxf on which the peak of the response is found. The 

peak amplitude on the sub-characteristic ray decays as 1/y/z, or as ljy/1 (for fixed 

depth).  A consequence of this is that the peak of the energy-like quantity E2 will 

decay as 1/z (l/£)- 

The response will also depend crucially on the pulse duration. This parameter 

appears through scaling £ with Tp, and z with cTp. Now J -> &*, and c0 and cx are 

normalized by c. Pulses with appreciable amplitude most often have Tp ~ 10" —10" 

sec, so m* is still large. Pulses that are long with respect to the relaxation time 

(T _> oo, or equivalently if r -> 0) will propagate unattenuated in the half-space 

with amplitude equal to the DC value of the frequency-domain transmission coefficient 

regardless of the pulse's DC-frequency content. The field just after the interface (no 

"skin-depth" since c0r ->• 0) satisfies a lossless wave equation with speed cx. On the 

other hand, very short pulses (Tp -> 0, or equivalently if r -*■ oo) will not penetrate 

far. In this case the electric field in the half-space (since now C0T -> oo) sees a high 

constant conductivity medium thus it satisfies a telegraphers wave equation whose 

far-field is the diffusion equation. 



B. Green Functions 
This subsection describes some rules of wave propagation that are derived from 

time-domain Green functions. The history of these Green functions is reviewed in 

Subsection 3B. We will first state some results involving upper bounds on prop- 

agated peak amplitudes and power-density-type quantities. These upper bounds 

are easily computed and they are independent of the detailed nature of the incident 

fields. The bounds are developed for normal incidence here and for oblique incidence 

in Subsection 3B. The present section concludes with a description of wave speeds 

and with brief-pulse and long-pulse approximations. These rules are all illustrated 

numerically using the water parameters es = 80.35, £„> = 1-00, and r = 8.13 psec 

from Subsection 2A; and the results are easily generalized to other Debye media 

and to non-Debye media. The necessary derivations and numerical validations are 

in Subsection 3B and Appendix A. 

For normal incidence, let the y-polarized incident electric field be /(* - z/c0) 

in the air-filled half-space z < 0. In the water-filled half-space z > 0, the resulting 

electric field is 

E(z,t) = EyM = exp (^^.sj /('-£)+ f^W**' ~ S)- 

(2.2) 

The Green function GE[z,t) is graphed in Fig. 1 for several depths z > 0. For the 

boundary z = 0, Ref. 9 derives GB(0,i) = -t~l exp[-f/(2.00 x 10-13s)]J1[f/(2.05 x 

10_13s)], where h is the modified Bessel function of the first kind; the oblique- 

incidence generalization is (3.12). The magnetic field tfx(z, t) = - fz/cdsdzEy[z, a)//z0 

also has a Green-function representation similar to (2.2). 

Many of our new results are based on (2.2) and Fig. 1. Safety standards 

may be affected by this type of analysis; so, in Appendix A, we show how to 

estimate the percentage error in computations, with the following results for our 

computations: (1) The pointwise numerical error in GE(0.500 mm, t) is no more 

than 1.70% of the peak value (with respect to t) of |GE(0.500 mm, t)\; (2) The 

pointwise numerical error in GE(4.00 mm, t) is no more than 0.800% of the peak 
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Fig. 1. The time dependence of the Green function GE(z,t) for water at several 

depths x. 
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value of |<2E(4.00 mm, t)\; and (3) For intermediate depths, the relative error in 

GB(z,0 decreases monotonically from 1.70% at z = 0.500 mm to 0.800% at z = 

4.00 mm. The closed-form expression for GE(0,£) is exact. 

We will use the following three norms: 

IM*. Oh = f°<«IM*»0l Jo 

Uy/2 (2.3) 
dt\h(z,t)\2) 

|/i(z,-)||oo = least upper bound o?\h(z,-)\, 

where, for each depth z, the least upper bound \h{z,-)\ao is evaluated with respect 

to t. Then, for each depth z from 0.500 mm through 4.00 mm, 

!*(,,.)l- < 1/0)1- exp (6.lgxlV0 +mln 
(0.202) |/(.)|co 

fitol/Ub, 
F2(z)\\f(-)h 

(2.4) 

regardless of the detailed nature of the incident electric field f(t). The right side 

of (2.4) is easily computed, given the functions Fi(z) = IGfifciOh and F2{z) = 

|GB(ä,-)IOO, which are graphed in Fig. 2. Inequality (2.4) defines upper bounds on 

the peak amplitudes of E{z,-). This inequality, and all of our other Green-function 

results, are validated numerically in Subsection 3B. The upper bound on the right 

side of (2.4) is almost attained in one of the numerical validations. In that sense, 

the upper bound is sharp. 

We will now show how relation (2.4) could be used in a safety standard for 

the peak amplitudes ofinternal electric fields. Suppose, for this hypothetical exam- 

ple, that it has been determined that peak electric fields must be no greater than 

0.200 V/m at depths greater than 1.00 mm, and no greater than 0.150 V/m at 

depths greater than 3.00 mm. That hypothetical internal-field standard is trans- 

lated, using (2.4) and Fig. 2, into a more easily regulated standard on incident 

electric fields /(£). The easily regulated standard is 

IV - Q 



1 1 1 r "i 1 1 r 

CM 

° 3 CD  ° 
CO 

o 

&2 

LL" 

1 

0 

1.5 

IO 

o 

C/T 
CD 
O 

0.5 

■J 1 L 

0.0005 
'    '    i 

0.0015 0.0025 
Depth (meter) 

J—i—i i    l J L 

0.0035 
0 

Fig. 2. The L3 norm Ft (z) and the L«, norm F2 (z) of the Green function GE (*,.) for 

water.. The3e norms and Eqn. (2.4) reduce the upper-bound computations 
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(1)  Peak value of |/(f)| < 0.740 V/m or 

(2) 
m2 

(3) 

Peak value of \f(t)\ < 40, 000 V/m and   /~d*|/(0|2 < 4.00 x 10-uV2s/ 
Jo 

Peak value of |/(i)| < 50, 000 V/m and   /   di|/(i)| < 2.80 x 10-nVs/m  . 
Jo 

(2.5) 

By reading the two graphs in Fig. 2 and using a calculator, one can use (2.4) to 

show that any incident field that satisfies item (1) or item (2) or item (3) of (2.5) 

is guaranteed to produce internal fields that comply with the hypothetical internal- 

field standard, regardless of all other details of f(t). 

Upper bounds also exist for quantities that resemble power densities.10 In 

particular, for any incident field f{t) and for each depth z from 0.500 mm through 

4.00 mm, the power-density-type term10 [tE(z,-)h]2 = J0°°dt\E(z,t)\2 satisfies 

r°° ,    f f      -z      \      . r(0.202)I/(-)h,l\ 
I  it\E(z,t)f < (|/(.)1, exP(6 l5x 10.5J +nnn[^i(2)^(yBi   j)   . 

(2.6) 

Subsection 3B numerically validates the inequality in (2.6), showing that the upper 

bound on the right side of (2.6) is almost attained in at least one case. 

We will now show how the upper bounds in (2.6) could be used in a safety 

standard for an power-density-type quantity related to internal electric fields. Sup- 

pose, for this hypothetical example, that it has been determined that the power- 

density-type quantity J0°°dt\E{z, t)|2 must be no greater than 1.50 x 10~12 V2s/m2 

at depths greater than 1.00 mm, and no greater than 1.00 x 10~12 V2s/m2 at depths 

greater than 3.00 mm. Equation (2.6) and Fig. 2 translate this hypothetical stan- 

dard for internal fields into a more easily regulated standard on incident electric 

fields f{t): 

or 
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m2  or (1) /  dt\f{t)\2 < 2.40 x 10-nV2s/ 
Jo 

(2) [ f°°dt\f{t)\2 < 36.0 V2s/m2  and   /  dt\f{t)\ < 3.90 x KT11 Vs/m 

(2.7) 

Subsection 3B shows that some pulses almost attain the upper bounds in (2.6), 

which was used to obtain (2.7). 
« 

The upper-bound concepts in (2.4) and (2.6) are easily extended to mag- 

netic fields and their time derivatives, and to oblique incidence. Subsection 3B has 

numerical results for all of those extensions. One can see there that making the 

angle of incidence more oblique will decrease the penetration into the medium of 

power-density-type quantities and also peak electric and magnetic fields. A related 

closed-form, modified-Bessel-function expression for the oblique-incidence reflection 

kernel R0(t) = C?B,fl(0,t) is given in (3.12). 

We will now state some Green-function results concerning wave speeds. 

These results are derived in Subsection 3B. For simplicity, the results are stated 

for normal incidence. Our first conclusion is that the main bulk of an electromag- 

netic pulse travels through water with speed CQ for 0.3 mm, and then slows until, for 

all depths beyond 0.7 mm, the pulse travels with the constant speed co/9.0. That 

behavior contrasts with the wavefront speed, which is mathematically well defined 

but is not always observable in a laboratory. The wavefront speed is precisely c0 

for all depths.11 Section 4 discusses various Debye models that are consistent, to 

within about 10%, with the band-limited water data2 used here. The large-depth 

speeds (all « co/9.0) for those Debye models vary by only about 10%. The shallow- 

depth speed and the wavefront speed of any Debye model, however, are both equal 

to c0 = l/^//io£oo. The shallow-depth and wavefront speeds, consequently, change 

considerably as one varies the Debye parameter £<» from 1.00 through 10.0, as 

described in Section 4. Therefore, a measurement of the wavefront speed or the 

shallow-depth speed would determine the Debye parameter £<x>- 

We conclude with some Green-function results concerning short-pulse and 

long-pulse approximations.  The propagation of any finite-valued incident electric 

n 



pulse /(*) is given simply by (2.2) and Fig. 1. We get additional insight by con- 

sidering approximations for what we will call elemental pulses /e: An element fe[t) 

is zero except on a single time interval, during which it is either strictly negative 

or strictly positive. For instance, a square pulse is an element, but a one-cycle 

sinusoid is not an element. Elements are important because any incident pulse / 

is a sum of positive-valued elements and negative-valued elements. If the dura- 

tion of an element /e(t) is much briefer than 30 psec, then the propagated pulse 

element is approximately |/,(-)|i<7B(*,<) (»« Kg. *) for ^ dePths Sreater than 

0.7 mm. If the duration of an element /e(t) is much longer than 50 psec, then the 

propagated pulse element is approximately 0.2/e [t - 9.0(z - 1 mm)/c + 17 psec] = 

0.2/e (t - 9.0z/c - 13 psec) for all depths from 1 mm through the depth at which 

the duration of GfetM) becomes comparable to the duration of /e(t). These ap- 

proximations are derived in Subsection 3B. 
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3.   DERIVATIONS 

A. PDEs 

To extract from (2.1) the equation describing the early-time evolution (in the "skin- 

layer") of the response we set everywhere in (2.1) d^ ~ — c0dx except in the operator 

d( + Codx since it expresses the propagation of the high-order waves. Any other terms 

in the resulting equation will describe the effect of the lower-order waves. The main 

disturbance for early times is modeled by 

(ty + Cod.)E + -%^E = 0;    z<c0r, 

subject to the boundary condition 2?(0,£) = g(£). The solution of (3.1) is 

(3.1) 

E{z,t)=g{{-T)<xp 
[      \2 COS2 fine/   \COTJ\ 

(3.2) 

We see that the response decays exponentially in a thin region of depth z ~ 0(COT), 

where the speed of propagation is c0. Note that the decay constant is inversely 

proportional to cos3 <}>{„<. thus normal incidence will result in the greatest amplitude 

in the medium. To describe the evolution of the lower-order waves, which travel with 

speed ci, we set in (2.1) d( ~ — cidx except in the operator d{ + cidz which expresses 

the hyperbolic nature of the lower-order waves. The main disturbance is now modeled 

by 

^ö2£;    z > C0T. (3.3) (d( + cxdz)E = l£ 

The boundary condition is approximately E(z0, £') = /»(£ ), where z0 is the depth after 

which (3.1) no longer applies, £' is the time with origin at z0/c0 (the time it takes 

for the pulse to reach z0 in the "skin-depth"), and h(£ ) represents (3.2) evaluated 

at z0. Equation (3.3) is an advection-diffusion equation, and describes the response 

after a depth of 0(COT) m. The peak of the response is on the sub-characteristic 

ray z% = Ci£ . The solution is very easily obtained from the solution of the diffusion 

equation. It is12 

E(z,0 = { 

x I    da 
Jo        tf - K)i 

2irr(cl - c?) 

h(K) 
r exp    - 

[2r(c2-c2)J 
(3.4) 
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Various techniques can be used to estimate the integral in (3.4) since ß/r is large. 

Here we are interested only in the primary behavior of E as a function of depth. For 

2 ^> 1 the response is 

^^') = ^£(cS7|eXP{- [2r(c2 - c?) }■ (3.5) 

On zt = *? we find that max{Es} ~ 1/v^, or ~ 1/^- This is verified with the 

numerical experiments in Section 4. 
« 
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B. Green Functions 

This subsection derives our Green-function results in the order in which they are de- 

scribed in Subsection 2B. Equation (2.2), for instance, is a Green-function represen- 

tation. These Green functions have become a standard technique in computational 

electromagnetics. They were first developed for non-dispersive media,13 and were 

then used to compute fields in dispersive media.14 That dispersive-medium work 

has not yet been published, owing to the death of R. Krueger, but generalizations 

are available.15-17 The Green function programs used in the present paper were 

developed by the authors of Ref. 16, along the lines of Appendix A of that paper. 

The Loo and L2 norms in (2.3) have special physical significance. The L2 

norm is important because (ce0/2) (1-EJ2)
2 is tne power density, whose mks units 

are Watt/m2, of an electric pulse in free space.10 Consequently, we will focus on the 

peak-value (p = 00) and power-density (p = 2) cases of the inequalities 

m*,-)\, < e-"I/(-)lp + |G(*.-)lr|/(-)L. (3.6) 

which are obtained by applying the Young theorem18 to (2.2), and for which a = 

1.63 X 104 m-1. In particular, although (3.6) is valid whenever 1 < p, q, r < 00 

satisfy r-1 = 1 + p_1 — g_1, we are most interested in the cases 

|J3(*,.)|oo<e-"|/(.)U + min 
IGB(z,-)ii||/(-)1co, 

l<fe(*,-)l«l/(-)ll 
(3.7) 

and 

INJ 

ns(..oW < {.-I/HI.+-[ KS1} ■      P-8> 

In numerical computations for water, |GE("V)II 
was observed to decrease slowly 

and monotonically from 0.2019 at 0.5 mm to 0.2014 at 3.5 mm. It is as if, for those 

depths in water, the advection-diffusion equation (3.3) were approximated by a heat 

equation and Gs(z,t), which is positive valued for depths beyond 0.5 mm, were 

analogous to a temperature distribution whose total conserved heat is proportional 
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to I<?E(Z,-)III- Equations (3.6)-(3.8), the almost-constant nature of |GE(*,')II> 
and 

numerical Green-function computations produced the results in (2.4)-(2.7). 

We now consider five numerical examples that validate the inequalities in 

(2.4). We will see that the minimum upper bounds in (2.4) are almost attained for 

some incident pulses. For these five examples, we choose the following hypothetical 

restrictions on the incident electric pulses" /(£): 

|/(-)|co < 1-00 V/m and 

|/(-)h ^ 6-32 x 10~ö Vsl/2/m and (3-9) 

|/(-)h < 4.00X10-11 Vs/m. 

Then (2.4) shows that any incident pulse / that satisfies (3.9) will.produce an 

internal field whose peak amplitude satisfies 

|^,-)|m<[exp(615xlV5m)v/m + min 
0.202 V/m, 

(6.32 xlO-8 Vs^/nO-FiOO, 
(4.00 xlO-11 Vs/m) F2{z) 

(3.10) 

where Fx(z) and F2[z) are graphed in Fig. 2. Each sum of the exponential in 

(3.10) and a term from the "min" clause of (3.10) yields one of the three top-most, 

boldface curves in Fig. 3. Relation (3.10) guarantees that the depth-dependent peak 

amplitudes of E(z,-) are less than the minimum of the three boldface upper-bound 

graphs. That prediction was tested using five incident pulses / that comply with 

(3.9). Those incident pulses are: (1) a 40-psec-duration square pulse with 1-V/m 

amplitude; (2) the absolute value f2{t) = |/4(0I of the 4-cycle, 80-GHz sinusoid in 

item 4 below; (3) the absolute value f3{t) = |/5(i)l of the 1-cycle, 80-GHz sinusoid 

in item 5 below; (4) a 4-cycle 80-GHz sinusoid with 1-V/m amplitude; and (5) a 

1-cycle 80-GHz sinusoid with 1-V/m amplitude. The norms of the pulses, which 

are tabulated below, all satisfy (3.9). 
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Table 1. Five incident pulses that satisfy the conditions in (3.9). The first incident 

pulse is 1 V/m for 0 < t < 40 psec, and it is 0 for all other times. The second pulse 

is the absolute value of (lV/m) sin[27rf/(8 X 10los)] for 0 < t < 50 psec, and it is 0 

for all other times. 

l 

2 

Example Duration           Type || • ||oo          II • h               II" I 

(V/m) (Vs^/m) (Vs/m) 

1 40-psec    'square pulse 1.00 6.32 xlO"6 4.00 xlO"11 

2 4 cycles     |80-GHz sine| 1.00 5.00xlO"6 3.18xlO"11 

3 1 cycle      |80-GHz sine| 1.00 2.50x 10~6 7.96xlO"1 

4 4 cycles      80-GHz sine 1.00 5.00xl0~6 3.18 xlO"11 

5 1 cycle       80-GHz sine 1.00 2.50x 10~6 7.96 xlO"12 

The peak amplitudes of the five internal fields E{z, •), corresponding to the above- 

tabulated incident fields, are also graphed in Fig. 3; the curves for Examples 4 

and 5 almost overlap. Those peak amplitudes are all less than the (boldface) upper 

bounds described earlier. The five examples, therefore, numerically validate the 

upper bound concept in (2.4). Fig. 3 also shows that the upper bounds are sharp 

in the sense that the peak amplitude of one pulse (Example 1) almost attains 

the minimum upper bound. That example involves a pulse with a nonzero DC- 

component19-21 /0°°di/(i)- It makes intuitive sense that the presence of a DC 

component in a pulse would tend to diminish the attenuation of the pulse in any 

medium, as an elementary analysis22 affirms for a non-Debye medium. 

Having just validated the upper-bound concept (2.4) for peaks, we now val- 

idate (2.6): The two top-most, boldface curves in Fig. 4 correspond to the upper 

bounds (e-"tt/||2 + ||GE||i||/||2)
2 and (e-ai/||2 + ||GE||2||/|i)

2 in (2-6), subject to the 

hypothetical restriction (3.9). The other five curves represent the power-density- 

type quantities [lEx{z,-)\\2}2 produced by to the five incident fields in Table 1. We 
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see that the field produced by Example 1 of Table 1 almost attains the minimum 

upper bound in Fig. 4. This completes our validation of the upper-bound concepts. 

As explained above (2.1), oblique incidence is taken into account using a 

simple, widely-known transformation of variables. Using the transformation, we 

obtain numerical results for 45°-incident electric fields f[t - (x + z)/(V2c)). In 

water (z > 0) the y component of the electric field is 

E{x,z,t) = E(o,z,t--^ 

rt-z/(V2c) 

*&*>* = eH4.35x~iO-5m) f (* " VTJ + L d3/(3)GE'458 ^^ ' a)' 
• (3-11) 

The function GB,45»(*,0 is graphed in Fig. 5 for several depths z > 0. The numeri- 

cal errors in Fig. 5 were quantitatively estimated using the method of Appendix A. 

The results are: (1) For each depth z, from 0.160 mm through 2.88 mm, the er- 

ror in the computed values of GE,45»(*,0 are no more than 3.19% of the peak 

value, with respect to time, of the actual values |GB(*,0l; and (2) The relative 

errors decrease, but not necessarily monotonically, from 3.19% at 0.160 mm to 

2.07% at 2.88 mm. At the boundary z = 0 and for all t > 0, GE,45»(0,i) = 

-r1 exp[-i/(1.01 x 10-13s)]/1[t/(1.03 x 10"13s)], where h is the modified Bessel 

function of the first kind. More generally, the oblique-incidence transformation and 

Ref. 9 imply, for all t > 0, that 

**(«) = GE,,(0,1) = ^ exp [- (i + ^^g) t]  1.(5^1^) •       <3'12) 

That exact result uses the modified Bessel function of the first kind to represent 

the reflections in the air-filled half-space (z < 0) that are caused by waves that are 

incident obliquely on the Debye half-space (z > 0) defined by 

„,      N       (£oo£oE{z,t), *<0 ,        s 
D^t) = \e00eoE(z,t) + as0j:dse-^^E(z,s),    * > 0 " ^    J 
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In particular, the reflected field is exactly /„' dsf(s)Re(t - s) for any incident field 

/. Equation (3.12) was used numerically to validate the z = 0 boundary values of 

the oblique-incidence Green-function computations that yielded Figs. 5, 6 and 8. 

Equation (3.12) was also used to validate, at z = 0, the previous percentage-error 

estimates for oblique incidence.  At z = 0, the estimated relative error was 1.91%; 

the true relative error was 1.87%. 

Applying the Young-theorem result (3.6) to the oblique-incidence represen- 

tation (3.11) yields obvious oblique-incidence generalizations of the upper-bound 

results (2.4)-(2.6); for instance, lE{0,z,-)\\2 < \f{-)[2 exp[-z/(4.35 x l(T5m)] + 

min[|GBl45.(*,0lil/(0h. |GB,45.(*,-)hl/(-)li]- The normsF3(z) = »GE,45.(z, -)h 

and FA(z) = IGB,45«0v)l« are graphed in Fig. 6, and |GB,45«(*,-)lli was observed 

to decrease slowly and monotonically from 0.149 at 0.240 mm to 0.144 at 3.00 mm. 

We numerically tested these oblique-incidence inequalities using the five pulses in 

Table 1. The inequalities were validated in each case, and the minimum upper 

bound was almost attained in the case of a DC-component pulse (Example 1). 

We will now substantiate the results in the last two paragraphs of Subsec- 

tion 2B. The results rely mainly on (2.2) and Fig. 1. Note that the first term on 

the right side of (2.2) represents a wave that travels with speed c0 and decays ex- 

ponentially by a factor of 132 in each 0.300 mm interval. Therefore the convolution 

term in (2.2) predominates for depths greater than 0 300 mm. The major features, 

such as the peaks, of the convolution kernel GE are seen in Fig. 1 to travel more 

slowly than c0 for depths greater than 0.500 mm. The peak of G&{z,t), for in- 

stance, is shown in Fig. 7 to travel with speed c0 for the first 0.300 mm, and then 

to slow gradually to co/9.0. (The small non-monotonic feature at shallow depths 

is a numerical artifact caused by applying the max(-) function to a peak that is 

broad.) The numerically determined fast speed c0 and the slow speed co/9.0 agree 

. quantitatively with analytical results in Subsection 2A, and also substantiate the 

results in the next-to-last paragraph of Subsection 2B. 

The last paragraph of Subsection 2B concerns elemental pulses fe(t), which 

are zero except on a single time interval, during which they are either strictly posi- 

tive or strictly negative. For example, the Green function GE(Z,0 is an elemental 
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pulse for all of the depths graphed in Fig. 1. The statements in Subsection 2B that 

concern the propagation of elemental pulses all rely on the following approxima- 

tion: If an elemental pulse /brief (0 is much briefer than an elemental pulse /ws(0» 

and if /brief(i) is concentrated at the time t0, then |/0'dj/brief(* - -O/iongWI = 

|/>W* " *)Arl«f(*)l « IA.lef(-)|ilW* ~ Ml- That approximation is asso- 

ciated with the concept of J-sequence functions in the elementary theory of Dirac 

delta functions. We also note that the exponential term in (2.2) quickly becomes 

negligible because it decays by a factor of 132 across each 0.300 mm interval of 

depth. These three results—the negligible exponential, the approximation of the 

convolution, and the observation that GE is an elemental pulse—together with 

(2.2) and Fig. 1 yield the brief-pulse result in Subsection 2B, which has the term 

|/e|iGB(*,0- The lonS-Pulse result in that subsection uses the additi,onal obser- 

vation, below (3.8), that ||GE(z,-)l|i is approximately constant, and the time shift 

in the long-pulse result in Subsection 2B also relies on Fig. 7 and results from the 

previous paragraph. 

In a final matter we would like to make it clear that we do not know what 

are the medical effects of isolated pulses.    We have, however, developed meth- 

ods that are flexible enough that they may be useful once the medical effects are 

known. Although we originally developed the upper-bound method along the lines 

of peak amplitudes and power densities, following Ref. 5, the method can eas- 

ily be extended to, say, the time derivative of the magnetic field Hx{z,t).    To    , 

demonstrate the extension, we computed the Green function GH in Hx{0,z,t) = 

_ [e-"/(* - z/Coo) + J*/eJ*f{t ~ 3)GH(z, a)] /fcoc«) using the methods of Refs. 13- 

17, and we validated the computation as described in Section 4. The Green-function 

representation      for      JHX      yields      the      following      analog      of     (3.6): 

P0Coo\9tH.{zr)\r < c-"|ö,/(.)|, + |/(0)||GH(*,-)IP + |GH(*,-)MÖI/(-)I«, where 

r-i  = p-1 + q-1 - 1 and 1 < p, q, r < oo.   The norms Fs{z) = |GH,45«(*»-)h 

and Fs{z) = |GH,45-(*,•)!« *°r that inequality are graphed in Fig. 8 for the 45°- 

iricidence, magnetic Green function GH,45° • 
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4.   NUMERICAL VALIDATION AND LABORA- 
TORY EXPERIMENTS 

We validated the numerical results obtained with the Green's function approach by 

comparing the computed electric and magnetic fields in a Debye half-space (Section 2, 

<f>inc = 0) to those computed with a finite difference method.23-24 Figure 9 shows 

electric field time-traces computed at three spatial locations in the half-space due to 

a Tp = 40-psec square pulse of initial amplitude 1 V/m. We note excellent agreement 

to within a width of the line over an amplitude scale of 10 orders of magnitude. This 

indicates a better than 1-part-per-billion agreement. (The small difference increases to 

two-pen-strokes' width at the shallowest depth, but only after the field itself decreases 

by a factor one thousand.) Also, the speeds of the first arrival and of the peak of the 

response can be deduced from this graph. We see that the first arrival occurs with 

speed c0 = c, while the peak of the response arrives with the speed Ci = 0.1116c as 

predicted in Section 2. Figure 10 shows a comparison of magnetic fields, computed 

with the two methods at three depths in the half-space, for a square-modulated 

sinusoidal pulse of Tp = 50-psec duration and carrier frequency 80 GHz. Again 

similarly excellent agreement is noted. 

Next, we confirm the analytical results presented in Subsection 2A by solving, 

with the Green's function method, for the impulse response, f(t - x/c) = 5(t - x/c), 

of the Debye half-space described there for (j}inc = 0 (f = t). To determine the two 

speeds predicted by (2.1) the peak of the impulse response was obtained from the 

simulation results. The temporal versus the spatial location of the peak's occurrence 

is graphed in Figure 7. The slope of the graph is the reciprocal of the speed of the peak 

of the response. The relative unimportance of the characteristic z = c0t (equivalently, 

the wavefront speed) with respect to the sub-characteristic z = cYt is immediately 

evident. The value of the slope is given in Figure 7 for two ranges of depth. We see 

that for depths of 0(COT) the response travels with the speed c0, and then slows down 

in another 0(COT) interval. This additional interval will be much smaller or altogether 

absent for band-limited pulses. Eventually, the pulse travels with the speed Ci for 

the remainder of the half-space. The diffusive character of the main disturbance in 

the half-space is exemplified in Figure 11 where the numerically obtained max{Ed} is 

compared with the analytically predicted behavior (l/\/z) as a function of depth. The 
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constant of proportionality for the l/\/z prediction was fit to the data at the center- 

point (4 mm) of the graph. We note that although the slow speed is achieved very 

early on (z ~0.1 mm), it takes some time for the pulse to start diffusing (z ~ 2.5 mm). 

This delay depends on the frequency content of the incident signal, and will be shorter 

for band-limited pulses. From the discussion and figures it is evident that the envelope 

and duration of the incident pulse control the magnitude and nature of the response 

of the medium. Any high-frequency carrier component decays exponentially with 

depth. Similar behavior was observed in numerical simulations with square pulses of 

various durations. All long duration pulses were found to travel unattenuated with 

amplitude T(u/ = 0) x max{E,nc}, and square modulated sinusoidal pulses of various 

carrier frequencies and durations (1 to 10 cycles) behaved like the Green's function 

with the carrier component exponentially small. 

We also checked the sensitivity of our calculations to the way in which we 

modeled the water data of Ref. 2. Reference 25 points out that many other data sets 

are available for water, so we were satisfied with any model that fit the data in Ref. 2 

to within 10%. In particular, we examined several Debye-model fits to the data in 

Ref. 2 for frequencies that are below 100 GHz and for which the data are also said, 

in the reference, to be reliable. Our experience in fitting those data is that £„, can 

be taken to be any number from 1.00 through 10.0, and then values for the two other 

Debye parameters, es and r, can be found that fit the data to within 10%. In that 

sense, the value of £M is somewhat arbitrary; for most of our simulations we chose 

£00 = 1.00, which is consistent with an assumption in Ref. 2. The corresponding 

Debye parameters are £«, = 1.00 and e, = 80.35 and r = 8.13 x 10~12s-1 in the 

notation of Subsection 2A, or, equivalently, a = 9.76 x 1012s_1 and b = 1.23 x 10us_1 

in the notation of (3.13). This fit is referred to as Model 1 in Fig. 12; it is the fit that 

is used in most of the numerical computations in this paper. Another model that fits 

the water data to within 10% accuracy is defined by £00 = 5.50 and e, = 78.20 and 

r = 8.1 X lO^V1, or, alternatively, a = 8.98 x lO^s"1 and b = 1.23 x lO1^"1. This 

second model is used only in Fig. 12, where it is called Model 2. The propagation of an 

incident 5-cycle 8-GHz 1-V/m-amplitude square-modulated sinusoid was computed 

for these two models. Figure 12 shows the resulting electric field produced at a 9.75- 

mm depth for both models. We compared the electric fields at 31 other representative 
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depths, from 0 cm through 4 cm, and observed similar agreement, commensurate with 

two different 10%-accuracy fits to the water data. A similar degree of agreement was 

also seen for the two models in computations for the following incident fields: (1) 

A 1-cycle 8-GHz square-modulated sinusoid; (2) A 1-cycle 10-GHz square-modulated 

sinusoid; (3) A 50-psec square pulse; and (4) A 100-psec square pulse. These results 

are numerical evidence that the computed internal fields are stable as the water model 

is perturbed by about 10%. 

Now we wish to provide an explanation, based on the understanding devel- 

oped herein, of the observations in Ref. 3 whereas no significant differences in SAR 

(Specific Absorption Rate) distribution between pulsed and CW (Continuous Wave) 

exposures were measured for a MEM (Muscle Equivalent Material) exhibiting two re- 

laxation times. The dielectric model was composed of two Debye mechanisms, which 

fit experimentally determined permittivity and conductivity data for MEM at 2.07, 

2.8, 5.6, and 9.3 GHz. The two relaxation times were TX = 6.63 psec, and r2 = 83.7 

psec. The material was illuminated with a train of square-modulated pulses of var- 

ious durations and repetition rates. We will explain the observations in Ref. 3 for 

the smallest pulse repetition rate used (200 pulses per second) for which the pulse 

duration was 0.5 /xsec. All other results in Ref. 3 with different pulse settings are 

similarly explained. For this incident signal the author of Ref. 3 used a carrier of 

5.6 GHz. Thus, the pulse duration was Tp = 5 x 10"7 sec, the quiescent interval 

between pulses was Tq = 5 x 10-3 sec, and each pulse contained 2800 cycles of car- 

rier. Further, it happened that Tp >> max{r} = r2, thus the medium would not 

respond in a dispersive manner, rather it exhibited an effective relative permittivity 

of e] + e] - eoo = 42.4 + 15.8 - 4.3 = 53.9 to the envelope of the pulses. With these 

parameter values in mind we expect the medium to sense a CW signal of carrier 5.6 

GHz, even in the pulsed case. Since the MEM has low heat diffusivity, i.e., it take's 

about 40 sec for a temperature change of 0.04 °C to occur, its temperature will change 

immeasurably in the time Tq between pulses. Consequently, the temperature will re- 

main constant until the next pulse arrives again to be seen by the medium as part 

of a CW exposure, hence the observed indistinguishability of the CW SAR versus 

the pulsed SAR. As the carrier frequency is increased the CW vs. pulsed exposure 

SARs should start disagreeing at smaller depths.   This is related to the frequency- 



dependent skin depth for the carrier component which is 9.7 mm at 5.6 GHz. All 

the measurements of SAR were obtained at depths well within the skin depth. The 

effects of the pulsing should be observable at depth greater than C0T2 ~ 1.2 cm since 

then the carrier component will have decayed sufficiently (it is exponentially decaying 

as in the CW case) so the remaining field will be due to the square envelope and will 

behave diffusively. 

The results presented in our paper also help in accurately predetermining sam- 

ple thickness to be used in single and total transmission Time Domain Spectroscopy 

(TDS) studies such as those presented in Ref. 26. In the single transmission approach 

one studies the first arrival through a long sample so that the highest frequency 

components will have decayed sufficiently in order not to mask the lower frequency 

components which, as we showed in Section 2, are significantly slower (for water 

d ~ Co/9).   The first suggestion arising from the analysis of Section 2 (verified by 

the numerical simulations) is that the sample can be as short as 2c0r when one is 

interested in measuring the static permittivity of a Debye-like material with single 

transmission TDS. On the other hand, in the total transmission approach the first 

arrival time through a short sample is used to best measure the infinite-frequency 

permittivity of the material under test. Therefore, a sample length shorter than c0r 

should be appropriate in order to capture the time of arrival of the highest frequencies 

and thus determine c«,.   (The next-to-last paragraph of Section 2 has related com- 

ments.) For the test case presented in the results section of Ref. 26 [Eqn. (8) there] 

it happens that e. = 17.3,  e« = 3.3,  r = 460 psec.   Thus, the highest frequency 

components travel with a speed c0 = 0.5505c, the lowest frequency components travel 

with speed cx = 0.2673c, and c0r = 7.6 cm.   The experimenters could have used a 

slab of material of at least 15 cm to reliably measure £., and a slab thickness of at 

most 7 cm to measure £., instead of using 50 cm and 2.7 cm respectively to do the 

measurements.   In Figure 13 we show the x-t location of the peak of the impulse 

response for this medium. (The two data points in one corner of the graph are minor 

numerical artifacts that are related to the similar numerical artifacts in Fig. 7.) The 

graph as a whole confirms our predictions of the sample lengths with which TDS will 

be most successful in measuring the permittivities. 
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5. CONCLUSION 

There are many generalized methods for computing the response of any single dis- 

persive medium to any single incident pulse. This paper has contributed nothing 

along those lines; instead, we have developed several related results that are general 

in a different way. We have found, for instance, that the power density and the 

peak amplitude of an incident pulse place upper bounds on the peak amplitude suf- 

fered inside a dispersive medium—independent of the other details of the incident 

pulse. Our Green-function results reduce the computation of such upper bounds 

to little more than a calculator exercise, and we have given numerical examples in 

which these sharp upper bounds are almost attained. We have reported similar 

upper-bound estimates for a quantity related to power density, and for the time 

derivative of the magnetic field. That time derivative, dtH, is largely responsible 

for electromotive-force currents in circuit-like structures; it is especially large for 

short-risetime pulses. Such upper bounds could, potentially, help in the regulation 

of electromagnetic interference or damage produced in dispersive media. 

Although our methods apply to dispersive media generally, we have used 

a Debye model for microwave-pulse propagation in water as a specific numerical 

example. For that water example, we reported a factor-of-nine effect in the wave 

speeds that seems to have been unnoticed until now, and we explained this large 

effect analytically using PDEs. The PDE analysis also yielded simple short-pulse 

and long-pulse approximations, as did an analysis of the numerical Green functions 

involved in the upper-bound concepts described earlier. We studied rates of decay 

in Subsection 2A, and approximations for detailed time traces are given in Subsec- 

tion 2B and Eqns. (3.2) and (3.4). Section 4 uses that work to explain the results 

of some laboratory experiments, and to offer suggestions for future experiments. 
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APPENDIX A: ERROR ESTIMATES 

This appendix develops an easily used method for estimating the percentage error 

in grid-dependent computations. The estimates are validated numerically in some 

cases for which exact solutions are known, and the estimates are also used in cases 

for which exact solutions are not known. These estimates use only one of the many 

definitions of relative error for functions of two variables, but the estimates can easily 

be adapted to other measures of relative error and to functions of more than two 

variables. We were motivated to estimate percentage errors because quantitative 

estimates of uncertainty could help in setting safety standards or in the use of other 

computations for which measures of numerical uncertainty are vital. 

The error estimates in this paper are empirical. The estimates are obtained 

by computing with several different grid sizes, noticing a pattern in the relative 

errors of the different computer runs, and using that inferred pattern to sum the 

series on the right side of the inequality ||/c — /e ||co < ||/c — /i ||oo + ||/i — h ||oo +1/2 — 

/3I00 + •••• The concepts of rate and order of convergence are not used in these 

empirical estimates. The logic behind the estimates is slightly intricate, but the 

resulting method uses only least upper bounds and geometric means and geometric 

series, which are extraordinarily simple concepts. 

We will estimate relative errors for functions of two variables. The error in 

a computed solution /C(-M) relative to the exact solution fe{z,t) can be defined as 

Erel[/c>/e]-     JÄRÖÜ• l   ' 
The relative error (Al) is a function of the depth z. For instance, if the relative 

error is known to be less than 1% over a range of depths z, then, for those depths, 

the exact solution fe{z,t) can differ from the computed solution fc{z,t) by no more 

than 1% of the peak value (with respect to t) of |/e(z,i)|. The just-mentioned peak 

value of |/e(zj-)| is unknown in all practical cases in which the exact solution /e is 

unknown; however, in the present hypothetical case of 1% relative error, the peak 

value of the unknown quantity |/e(z, -)| can differ by no more than 1% from the peak 

value of the known quantity |/c(z, •)!• A brief derivation involving a geometric series 

then shows that, in the case of 1% relative error, the graph of the exact solution 
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fe{z,t) is guaranteed to fall between the graph of fc{z,t) + 1.01%fl/c(z,-)!°o and 

the graph of/c(z,0-l.ÖT%«/c(^-)Ioo. The quantities ±1.01%||/c(*,-)||oo are called 

error bars. 
We will now go step by step through the error estimates illustrated in Fig. 14. 

Those estimates are for Green-function computations of waves normally incident on 

water.   The computations were done for five different grids, and the results are 

called /i(z,i), h[z,t),... ,/5(*,0 in order of the increasing fineness of the grids. 

Because of computer limitations, the finer-grid computations were done for shal- 

lower depths than were the coarser-grid computations.   For zero depth, the light 

circles on the z = 0 axis of Fig. 14 represent ||/i(0,-) - /2(0, •)ioo/l/s(0,-)|oo, 

1/2(0,-) - /3(0,-)l|cc/I/5(0,-)|oo,   |/3(0,.) - /4(0,-)«oo/||/5(0,-)«oo, and ||/4(0,.) - 

/5(0,-)loo/I/5(0,-)loo, running from top to bottom along the vertical axis. For in- 

stance, the error in /4(0,i) relative to the most finely computed result /5(0,i) is 

0.157%.  The even spacing of the four fight circles along the logarithmic, vertical 

axis of Fig. 14 suggests that the four relative errors are in geometric progression; 

in fact, the ratio of the second-largest relative error to the largest relative error 

is 0.368, the ratio of the next two smaller relative errors is 0.284, the ratio of the 

two smallest relative errors is 0.268, and the geometric mean of the three previous 

numbers is 0.304. For those reasons we assume 

l/n+1(0,-)-/n+2(0,-)«~  w ((U04)»   l*(°;->;-*j0'->K (A2) 
i/5(0,-)l|oo V ' 1/5(0, Oloo 

even for hypothetical results, such as /100, which would come from computations 

involving a much-finer grid than was used for the actual computation of /5. We 

also assume that the exact result fe{z,t) is the n-> 00 limit of fn{z,t). The triangle 

inequality for norms then implies ||/i -/e||oo < l/i -/2II00 +1/2 -/3I00 +II/3 -/4I00 + 

• • •. We use (A2) in the right side of the previous inequality to get a geometric series, 

which sums to 

ll/l(0,-)-/e(0,-)ttoo    < 1 |/l(Q,-)-/2(0.-)lco   = 8 08% {A3) 

11/5(0, -)|oo 1-0.304 |/5(0, Ol- 
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at z = 0. That 8.08% estimated relative error is plotted as the top-most heavy circle 

on the vertical axis of Fig. 14. The analysis was repeated for the relative errors of 

other computations /,-, yielding 

l/<(0,0-/.(0.0l~  < , 44 l/i(0.0-/w(O.OI~ ,M) 
—ßÜMÜ 1A IMC 01»      ' 

for i = 1,2,3,4. Those estimated relative errors are also plotted as heavy circles on 

the vertical axis of Fig. 14. 

Reference 9 has an exact, closed form, modified-Bessel-function expression 

of the zero-depth Green function for a half-space of Debye medium. That exact 

solution /e was used to compute the true relative errors Erei[/i,/e] at z = 0. Those 

true relative errors are plotted as the bold Xs on Fig. 14. The true relative errors 

(bold Xs) validate the error estimates (bold circles) because the two sets of errors 

match closely; for instance, the error estimate (A4) for /3(0, •) was that there would 

be 0.844% error relative to /e, and the actual error in /3(0,-) relative to /e was 

0.797%. Our percentage-error method involving geometric means and geometric 

series is thereby validated. 

The relative errors »/.-(z,-) - /i+ifc.OU/I/st*.-)!« were then computed 

at the depths z = 0.480 mm, 1.04 mm, 1.52 mm, and 2.00 mm, for i = 1,2,3,4. 

Those results are plotted as some of the light circles to the right of the vertical 

axis in Fig. 14. Error estimates for /3(*,-) were computed using the geometric- 

series technique in (A2)-(A4), with the results plotted as several bold asterisks on 

Fig. 14. The ratios of relative errors and the geometric means of the ratios were 

computed separately for each depth. In particular, the geometric means for the four 

depths mentioned in this paragraph are 0.302, 0.328, 0.315, and 0.333 for 0.480 mm 

through 2.00 mm, consecutively. We wiU now explain how the relative errors for 

depths beyond 2.00 mm were computed. 

The finest-discretization run was not computed beyond 2.00 mm for reasons 

related to computer resources. Thus, only fu f2, h, and /4 were analyzed for the 

depths from 2.48 mm through 4.00 mm. These analyses were done as described in 

the previous paragraph, and the geometric means were also computed separately 

for each depth.   Similarly, the runs fu /2, and /3 were analyzed for depths from 
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5.04 mm through 7.04 mm. In these computations, and in all other computations 

described in this appendix, the L^ norms were computed using 90 evenly spaced 

time points. 

The final result in Fig. 14 is symbolized by the bold asterisks there. The 

result is that fz{z,t) has errors relative to /«. that are expected to fall monotonically 

from about 1.70% at z =0.480 mm to about 0.799% at z =4.00 mm. The error in 

/3(0,i) relative to /e(0,t) is actually 0.797%. Figure 14 shows that the relative 

errors are non-monotonic from 0.00 mm through 0.500 mm; therefore, we make no 

further inferences about the relative errors in that first half-millimeter. 
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